Catalytic oxidation of NO to NO 2 for industrial nitric acid production using Ag-promoted MnO 2 /ZrO 2 catalysts

The Ostwald process is the most common industrial process to produce nitric acid (HNO 3 ). It involves three main steps; ammonia oxidation in air over Pt–Rh gauze catalysts to produce nitric oxide, homogeneous gas-phase conversion of NO to NO 2 , and subsequent absorption of the NO 2 by water to pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2023-05, Vol.13 (9), p.2783-2793
Hauptverfasser: Gopakumar, Jithin, Vold, Sunniva, Enger, Bjørn Christian, Waller, David, Vullum, Per Erik, Rønning, Magnus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2793
container_issue 9
container_start_page 2783
container_title Catalysis science & technology
container_volume 13
creator Gopakumar, Jithin
Vold, Sunniva
Enger, Bjørn Christian
Waller, David
Vullum, Per Erik
Rønning, Magnus
description The Ostwald process is the most common industrial process to produce nitric acid (HNO 3 ). It involves three main steps; ammonia oxidation in air over Pt–Rh gauze catalysts to produce nitric oxide, homogeneous gas-phase conversion of NO to NO 2 , and subsequent absorption of the NO 2 by water to produce nitric acid. Turning the homogeneous gas-phase NO oxidation reaction catalytic may lead to a significant reduction in footprint and capital expenditure. However, no industrial catalyst yet exists for this process. In this work, we focus on catalytic oxidation of NO to NO 2 using silver-promoted manganese on zirconia catalysts at industrially relevant conditions (10% NO, 6% O 2 and 15% H 2 O). Silver was found to promote the low-temperature activity of manganese catalysts in both dry and wet conditions compared to unpromoted manganese. The results demonstrate that manganese catalysts are able to work at low temperatures and concentrations relevant to industrial catalytic oxidation of NO.
doi_str_mv 10.1039/D2CY02178A
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2CY02178A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D2CY02178A</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76A-c6b50c9f0849175872d7a03c50a6e9d8e347c53695478c1081edff16a45a6af33</originalsourceid><addsrcrecordid>eNpFkMtKxDAUhoMoOIyz8QmyFurknnRZ6hVGZzMb3ZSYNEOk05QkBeftbUfRszjf4cB_Lj8A1xjdYkTL9R2p3xDBUlVnYEEQYwWTAp__1ZxeglVKn2gKVmKkyAIMtc66O2ZvYPjyVmcfehgcfN3CHOZMoAsR-t6OKUevO9j7iQZq4y0cYrCjOWnG5Ps9rPbF1DuE3Fr40s_q9XucYU5rUk5X4MLpLrWrXy7B7uF-Vz8Vm-3jc11tCiNFVRjxwZEpHVLToZIrSazUiBqOtGhLq1rKpOFUlJxJZaZXcGudw0IzroV2lC7Bzc9YE0NKsXXNEP1Bx2ODUTO71fy7Rb8BGQNbWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalytic oxidation of NO to NO 2 for industrial nitric acid production using Ag-promoted MnO 2 /ZrO 2 catalysts</title><source>Royal Society Of Chemistry Journals</source><creator>Gopakumar, Jithin ; Vold, Sunniva ; Enger, Bjørn Christian ; Waller, David ; Vullum, Per Erik ; Rønning, Magnus</creator><creatorcontrib>Gopakumar, Jithin ; Vold, Sunniva ; Enger, Bjørn Christian ; Waller, David ; Vullum, Per Erik ; Rønning, Magnus</creatorcontrib><description>The Ostwald process is the most common industrial process to produce nitric acid (HNO 3 ). It involves three main steps; ammonia oxidation in air over Pt–Rh gauze catalysts to produce nitric oxide, homogeneous gas-phase conversion of NO to NO 2 , and subsequent absorption of the NO 2 by water to produce nitric acid. Turning the homogeneous gas-phase NO oxidation reaction catalytic may lead to a significant reduction in footprint and capital expenditure. However, no industrial catalyst yet exists for this process. In this work, we focus on catalytic oxidation of NO to NO 2 using silver-promoted manganese on zirconia catalysts at industrially relevant conditions (10% NO, 6% O 2 and 15% H 2 O). Silver was found to promote the low-temperature activity of manganese catalysts in both dry and wet conditions compared to unpromoted manganese. The results demonstrate that manganese catalysts are able to work at low temperatures and concentrations relevant to industrial catalytic oxidation of NO.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/D2CY02178A</identifier><language>eng</language><ispartof>Catalysis science &amp; technology, 2023-05, Vol.13 (9), p.2783-2793</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76A-c6b50c9f0849175872d7a03c50a6e9d8e347c53695478c1081edff16a45a6af33</citedby><cites>FETCH-LOGICAL-c76A-c6b50c9f0849175872d7a03c50a6e9d8e347c53695478c1081edff16a45a6af33</cites><orcidid>0000-0003-1649-2428 ; 0000-0002-6116-6659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gopakumar, Jithin</creatorcontrib><creatorcontrib>Vold, Sunniva</creatorcontrib><creatorcontrib>Enger, Bjørn Christian</creatorcontrib><creatorcontrib>Waller, David</creatorcontrib><creatorcontrib>Vullum, Per Erik</creatorcontrib><creatorcontrib>Rønning, Magnus</creatorcontrib><title>Catalytic oxidation of NO to NO 2 for industrial nitric acid production using Ag-promoted MnO 2 /ZrO 2 catalysts</title><title>Catalysis science &amp; technology</title><description>The Ostwald process is the most common industrial process to produce nitric acid (HNO 3 ). It involves three main steps; ammonia oxidation in air over Pt–Rh gauze catalysts to produce nitric oxide, homogeneous gas-phase conversion of NO to NO 2 , and subsequent absorption of the NO 2 by water to produce nitric acid. Turning the homogeneous gas-phase NO oxidation reaction catalytic may lead to a significant reduction in footprint and capital expenditure. However, no industrial catalyst yet exists for this process. In this work, we focus on catalytic oxidation of NO to NO 2 using silver-promoted manganese on zirconia catalysts at industrially relevant conditions (10% NO, 6% O 2 and 15% H 2 O). Silver was found to promote the low-temperature activity of manganese catalysts in both dry and wet conditions compared to unpromoted manganese. The results demonstrate that manganese catalysts are able to work at low temperatures and concentrations relevant to industrial catalytic oxidation of NO.</description><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKxDAUhoMoOIyz8QmyFurknnRZ6hVGZzMb3ZSYNEOk05QkBeftbUfRszjf4cB_Lj8A1xjdYkTL9R2p3xDBUlVnYEEQYwWTAp__1ZxeglVKn2gKVmKkyAIMtc66O2ZvYPjyVmcfehgcfN3CHOZMoAsR-t6OKUevO9j7iQZq4y0cYrCjOWnG5Ps9rPbF1DuE3Fr40s_q9XucYU5rUk5X4MLpLrWrXy7B7uF-Vz8Vm-3jc11tCiNFVRjxwZEpHVLToZIrSazUiBqOtGhLq1rKpOFUlJxJZaZXcGudw0IzroV2lC7Bzc9YE0NKsXXNEP1Bx2ODUTO71fy7Rb8BGQNbWA</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Gopakumar, Jithin</creator><creator>Vold, Sunniva</creator><creator>Enger, Bjørn Christian</creator><creator>Waller, David</creator><creator>Vullum, Per Erik</creator><creator>Rønning, Magnus</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1649-2428</orcidid><orcidid>https://orcid.org/0000-0002-6116-6659</orcidid></search><sort><creationdate>20230509</creationdate><title>Catalytic oxidation of NO to NO 2 for industrial nitric acid production using Ag-promoted MnO 2 /ZrO 2 catalysts</title><author>Gopakumar, Jithin ; Vold, Sunniva ; Enger, Bjørn Christian ; Waller, David ; Vullum, Per Erik ; Rønning, Magnus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76A-c6b50c9f0849175872d7a03c50a6e9d8e347c53695478c1081edff16a45a6af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopakumar, Jithin</creatorcontrib><creatorcontrib>Vold, Sunniva</creatorcontrib><creatorcontrib>Enger, Bjørn Christian</creatorcontrib><creatorcontrib>Waller, David</creatorcontrib><creatorcontrib>Vullum, Per Erik</creatorcontrib><creatorcontrib>Rønning, Magnus</creatorcontrib><collection>CrossRef</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopakumar, Jithin</au><au>Vold, Sunniva</au><au>Enger, Bjørn Christian</au><au>Waller, David</au><au>Vullum, Per Erik</au><au>Rønning, Magnus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic oxidation of NO to NO 2 for industrial nitric acid production using Ag-promoted MnO 2 /ZrO 2 catalysts</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2023-05-09</date><risdate>2023</risdate><volume>13</volume><issue>9</issue><spage>2783</spage><epage>2793</epage><pages>2783-2793</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>The Ostwald process is the most common industrial process to produce nitric acid (HNO 3 ). It involves three main steps; ammonia oxidation in air over Pt–Rh gauze catalysts to produce nitric oxide, homogeneous gas-phase conversion of NO to NO 2 , and subsequent absorption of the NO 2 by water to produce nitric acid. Turning the homogeneous gas-phase NO oxidation reaction catalytic may lead to a significant reduction in footprint and capital expenditure. However, no industrial catalyst yet exists for this process. In this work, we focus on catalytic oxidation of NO to NO 2 using silver-promoted manganese on zirconia catalysts at industrially relevant conditions (10% NO, 6% O 2 and 15% H 2 O). Silver was found to promote the low-temperature activity of manganese catalysts in both dry and wet conditions compared to unpromoted manganese. The results demonstrate that manganese catalysts are able to work at low temperatures and concentrations relevant to industrial catalytic oxidation of NO.</abstract><doi>10.1039/D2CY02178A</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1649-2428</orcidid><orcidid>https://orcid.org/0000-0002-6116-6659</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2023-05, Vol.13 (9), p.2783-2793
issn 2044-4753
2044-4761
language eng
recordid cdi_crossref_primary_10_1039_D2CY02178A
source Royal Society Of Chemistry Journals
title Catalytic oxidation of NO to NO 2 for industrial nitric acid production using Ag-promoted MnO 2 /ZrO 2 catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20oxidation%20of%20NO%20to%20NO%202%20for%20industrial%20nitric%20acid%20production%20using%20Ag-promoted%20MnO%202%20/ZrO%202%20catalysts&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Gopakumar,%20Jithin&rft.date=2023-05-09&rft.volume=13&rft.issue=9&rft.spage=2783&rft.epage=2793&rft.pages=2783-2793&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/D2CY02178A&rft_dat=%3Ccrossref%3E10_1039_D2CY02178A%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true