Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification

Chemical reaction neural network (CRNN), a recently developed tool for autonomous discovery of reaction models, has been successfully demonstrated on a variety of chemical engineering and biochemical systems. It leverages the extraordinary data-fitting capacity of modern deep neural networks (DNNs)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-02, Vol.25 (5), p.377-3717
Hauptverfasser: Li, Qiaofeng, Chen, Huaibo, Koenig, Benjamin C, Deng, Sili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3717
container_issue 5
container_start_page 377
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Li, Qiaofeng
Chen, Huaibo
Koenig, Benjamin C
Deng, Sili
description Chemical reaction neural network (CRNN), a recently developed tool for autonomous discovery of reaction models, has been successfully demonstrated on a variety of chemical engineering and biochemical systems. It leverages the extraordinary data-fitting capacity of modern deep neural networks (DNNs) while preserving high interpretability and robustness by embedding widely applicable physical laws such as the law of mass action and the Arrhenius law. In this paper, we further developed Bayesian CRNN to not only reconstruct but also quantify the uncertainty of chemical kinetic models from data. Two methods, the Markov chain Monte Carlo algorithm and variational inference, were used to perform the Bayesian CRNN, with the latter mainly adopted for its speed. We demonstrated the capability of Bayesian CRNN in the kinetic uncertainty quantification of different types of chemical systems and discussed the importance of embedding physical laws in data-driven modeling. Finally, we discussed the adaptation of Bayesian CRNN for incomplete measurements and model mixing for global uncertainty quantification. We develop Bayesian Chemical Reaction Neural Network (B-CRNN), a method to infer chemical reaction models and provide the associated uncertainty purely from data without prior knowledge of reaction templates.
doi_str_mv 10.1039/d2cp05083h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2CP05083H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771279981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-d106b18c1e180a2819c365c9ef6ba554c7ab3bb38e17900691d3d18c1d6180b43</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4EWEan60aXrU-WPCQA968lDSNGXZ2mTmB7L_3szNCZ6S8D758ngPgFMErxEk5U2DxRLmkJHZHhiijJK0hCzb390LOgBHzs0hhChH5BAMCKUUYUyH4OOOr6RTXCdiJnsleJdYyYVXRidaBhvfWvovYxdJa2zCgzfa9Ca4ZKFiQYkkaCGt50r7VfIZuPaqjTHrgGNw0PLOyZPtOQLvjw9v40k6fXl6Ht9OU0EK4tMGQVojJpBEDHLMUCkIzUUpW1rzPM9EwWtS14RJVJQQ0hI1pFn7hsYPdUZG4HKTu7TmM0jnq145IbuOaxk7rXBBGc4wJTjSi390boLVsbuoCoSLsmQoqquNEtY4Z2VbLa3quV1VCFbrkVf3ePz6M_JJxOfbyFD3stnR3xlHcLYB1old9W9n5BuzOYY2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771279981</pqid></control><display><type>article</type><title>Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Li, Qiaofeng ; Chen, Huaibo ; Koenig, Benjamin C ; Deng, Sili</creator><creatorcontrib>Li, Qiaofeng ; Chen, Huaibo ; Koenig, Benjamin C ; Deng, Sili</creatorcontrib><description>Chemical reaction neural network (CRNN), a recently developed tool for autonomous discovery of reaction models, has been successfully demonstrated on a variety of chemical engineering and biochemical systems. It leverages the extraordinary data-fitting capacity of modern deep neural networks (DNNs) while preserving high interpretability and robustness by embedding widely applicable physical laws such as the law of mass action and the Arrhenius law. In this paper, we further developed Bayesian CRNN to not only reconstruct but also quantify the uncertainty of chemical kinetic models from data. Two methods, the Markov chain Monte Carlo algorithm and variational inference, were used to perform the Bayesian CRNN, with the latter mainly adopted for its speed. We demonstrated the capability of Bayesian CRNN in the kinetic uncertainty quantification of different types of chemical systems and discussed the importance of embedding physical laws in data-driven modeling. Finally, we discussed the adaptation of Bayesian CRNN for incomplete measurements and model mixing for global uncertainty quantification. We develop Bayesian Chemical Reaction Neural Network (B-CRNN), a method to infer chemical reaction models and provide the associated uncertainty purely from data without prior knowledge of reaction templates.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp05083h</identifier><identifier>PMID: 36661226</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Algorithms ; Artificial neural networks ; Bayesian analysis ; Chemical engineering ; Chemical reactions ; Embedding ; Markov chains ; Neural networks ; Uncertainty</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-02, Vol.25 (5), p.377-3717</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-d106b18c1e180a2819c365c9ef6ba554c7ab3bb38e17900691d3d18c1d6180b43</citedby><cites>FETCH-LOGICAL-c373t-d106b18c1e180a2819c365c9ef6ba554c7ab3bb38e17900691d3d18c1d6180b43</cites><orcidid>0000-0002-9756-2258 ; 0000-0002-3421-7414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36661226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qiaofeng</creatorcontrib><creatorcontrib>Chen, Huaibo</creatorcontrib><creatorcontrib>Koenig, Benjamin C</creatorcontrib><creatorcontrib>Deng, Sili</creatorcontrib><title>Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Chemical reaction neural network (CRNN), a recently developed tool for autonomous discovery of reaction models, has been successfully demonstrated on a variety of chemical engineering and biochemical systems. It leverages the extraordinary data-fitting capacity of modern deep neural networks (DNNs) while preserving high interpretability and robustness by embedding widely applicable physical laws such as the law of mass action and the Arrhenius law. In this paper, we further developed Bayesian CRNN to not only reconstruct but also quantify the uncertainty of chemical kinetic models from data. Two methods, the Markov chain Monte Carlo algorithm and variational inference, were used to perform the Bayesian CRNN, with the latter mainly adopted for its speed. We demonstrated the capability of Bayesian CRNN in the kinetic uncertainty quantification of different types of chemical systems and discussed the importance of embedding physical laws in data-driven modeling. Finally, we discussed the adaptation of Bayesian CRNN for incomplete measurements and model mixing for global uncertainty quantification. We develop Bayesian Chemical Reaction Neural Network (B-CRNN), a method to infer chemical reaction models and provide the associated uncertainty purely from data without prior knowledge of reaction templates.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bayesian analysis</subject><subject>Chemical engineering</subject><subject>Chemical reactions</subject><subject>Embedding</subject><subject>Markov chains</subject><subject>Neural networks</subject><subject>Uncertainty</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3el4EWEan60aXrU-WPCQA968lDSNGXZ2mTmB7L_3szNCZ6S8D758ngPgFMErxEk5U2DxRLmkJHZHhiijJK0hCzb390LOgBHzs0hhChH5BAMCKUUYUyH4OOOr6RTXCdiJnsleJdYyYVXRidaBhvfWvovYxdJa2zCgzfa9Ca4ZKFiQYkkaCGt50r7VfIZuPaqjTHrgGNw0PLOyZPtOQLvjw9v40k6fXl6Ht9OU0EK4tMGQVojJpBEDHLMUCkIzUUpW1rzPM9EwWtS14RJVJQQ0hI1pFn7hsYPdUZG4HKTu7TmM0jnq145IbuOaxk7rXBBGc4wJTjSi390boLVsbuoCoSLsmQoqquNEtY4Z2VbLa3quV1VCFbrkVf3ePz6M_JJxOfbyFD3stnR3xlHcLYB1old9W9n5BuzOYY2</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Li, Qiaofeng</creator><creator>Chen, Huaibo</creator><creator>Koenig, Benjamin C</creator><creator>Deng, Sili</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9756-2258</orcidid><orcidid>https://orcid.org/0000-0002-3421-7414</orcidid></search><sort><creationdate>20230201</creationdate><title>Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification</title><author>Li, Qiaofeng ; Chen, Huaibo ; Koenig, Benjamin C ; Deng, Sili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-d106b18c1e180a2819c365c9ef6ba554c7ab3bb38e17900691d3d18c1d6180b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bayesian analysis</topic><topic>Chemical engineering</topic><topic>Chemical reactions</topic><topic>Embedding</topic><topic>Markov chains</topic><topic>Neural networks</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiaofeng</creatorcontrib><creatorcontrib>Chen, Huaibo</creatorcontrib><creatorcontrib>Koenig, Benjamin C</creatorcontrib><creatorcontrib>Deng, Sili</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiaofeng</au><au>Chen, Huaibo</au><au>Koenig, Benjamin C</au><au>Deng, Sili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>25</volume><issue>5</issue><spage>377</spage><epage>3717</epage><pages>377-3717</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Chemical reaction neural network (CRNN), a recently developed tool for autonomous discovery of reaction models, has been successfully demonstrated on a variety of chemical engineering and biochemical systems. It leverages the extraordinary data-fitting capacity of modern deep neural networks (DNNs) while preserving high interpretability and robustness by embedding widely applicable physical laws such as the law of mass action and the Arrhenius law. In this paper, we further developed Bayesian CRNN to not only reconstruct but also quantify the uncertainty of chemical kinetic models from data. Two methods, the Markov chain Monte Carlo algorithm and variational inference, were used to perform the Bayesian CRNN, with the latter mainly adopted for its speed. We demonstrated the capability of Bayesian CRNN in the kinetic uncertainty quantification of different types of chemical systems and discussed the importance of embedding physical laws in data-driven modeling. Finally, we discussed the adaptation of Bayesian CRNN for incomplete measurements and model mixing for global uncertainty quantification. We develop Bayesian Chemical Reaction Neural Network (B-CRNN), a method to infer chemical reaction models and provide the associated uncertainty purely from data without prior knowledge of reaction templates.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36661226</pmid><doi>10.1039/d2cp05083h</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9756-2258</orcidid><orcidid>https://orcid.org/0000-0002-3421-7414</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-02, Vol.25 (5), p.377-3717
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_D2CP05083H
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Algorithms
Artificial neural networks
Bayesian analysis
Chemical engineering
Chemical reactions
Embedding
Markov chains
Neural networks
Uncertainty
title Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20chemical%20reaction%20neural%20network%20for%20autonomous%20kinetic%20uncertainty%20quantification&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Li,%20Qiaofeng&rft.date=2023-02-01&rft.volume=25&rft.issue=5&rft.spage=377&rft.epage=3717&rft.pages=377-3717&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp05083h&rft_dat=%3Cproquest_cross%3E2771279981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771279981&rft_id=info:pmid/36661226&rfr_iscdi=true