Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification
Chemical reaction neural network (CRNN), a recently developed tool for autonomous discovery of reaction models, has been successfully demonstrated on a variety of chemical engineering and biochemical systems. It leverages the extraordinary data-fitting capacity of modern deep neural networks (DNNs)...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-02, Vol.25 (5), p.377-3717 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3717 |
---|---|
container_issue | 5 |
container_start_page | 377 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Li, Qiaofeng Chen, Huaibo Koenig, Benjamin C Deng, Sili |
description | Chemical reaction neural network (CRNN), a recently developed tool for autonomous discovery of reaction models, has been successfully demonstrated on a variety of chemical engineering and biochemical systems. It leverages the extraordinary data-fitting capacity of modern deep neural networks (DNNs) while preserving high interpretability and robustness by embedding widely applicable physical laws such as the law of mass action and the Arrhenius law. In this paper, we further developed Bayesian CRNN to not only reconstruct but also quantify the uncertainty of chemical kinetic models from data. Two methods, the Markov chain Monte Carlo algorithm and variational inference, were used to perform the Bayesian CRNN, with the latter mainly adopted for its speed. We demonstrated the capability of Bayesian CRNN in the kinetic uncertainty quantification of different types of chemical systems and discussed the importance of embedding physical laws in data-driven modeling. Finally, we discussed the adaptation of Bayesian CRNN for incomplete measurements and model mixing for global uncertainty quantification.
We develop Bayesian Chemical Reaction Neural Network (B-CRNN), a method to infer chemical reaction models and provide the associated uncertainty purely from data without prior knowledge of reaction templates. |
doi_str_mv | 10.1039/d2cp05083h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2CP05083H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771279981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-d106b18c1e180a2819c365c9ef6ba554c7ab3bb38e17900691d3d18c1d6180b43</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4EWEan60aXrU-WPCQA968lDSNGXZ2mTmB7L_3szNCZ6S8D758ngPgFMErxEk5U2DxRLmkJHZHhiijJK0hCzb390LOgBHzs0hhChH5BAMCKUUYUyH4OOOr6RTXCdiJnsleJdYyYVXRidaBhvfWvovYxdJa2zCgzfa9Ca4ZKFiQYkkaCGt50r7VfIZuPaqjTHrgGNw0PLOyZPtOQLvjw9v40k6fXl6Ht9OU0EK4tMGQVojJpBEDHLMUCkIzUUpW1rzPM9EwWtS14RJVJQQ0hI1pFn7hsYPdUZG4HKTu7TmM0jnq145IbuOaxk7rXBBGc4wJTjSi390boLVsbuoCoSLsmQoqquNEtY4Z2VbLa3quV1VCFbrkVf3ePz6M_JJxOfbyFD3stnR3xlHcLYB1old9W9n5BuzOYY2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771279981</pqid></control><display><type>article</type><title>Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Li, Qiaofeng ; Chen, Huaibo ; Koenig, Benjamin C ; Deng, Sili</creator><creatorcontrib>Li, Qiaofeng ; Chen, Huaibo ; Koenig, Benjamin C ; Deng, Sili</creatorcontrib><description>Chemical reaction neural network (CRNN), a recently developed tool for autonomous discovery of reaction models, has been successfully demonstrated on a variety of chemical engineering and biochemical systems. It leverages the extraordinary data-fitting capacity of modern deep neural networks (DNNs) while preserving high interpretability and robustness by embedding widely applicable physical laws such as the law of mass action and the Arrhenius law. In this paper, we further developed Bayesian CRNN to not only reconstruct but also quantify the uncertainty of chemical kinetic models from data. Two methods, the Markov chain Monte Carlo algorithm and variational inference, were used to perform the Bayesian CRNN, with the latter mainly adopted for its speed. We demonstrated the capability of Bayesian CRNN in the kinetic uncertainty quantification of different types of chemical systems and discussed the importance of embedding physical laws in data-driven modeling. Finally, we discussed the adaptation of Bayesian CRNN for incomplete measurements and model mixing for global uncertainty quantification.
We develop Bayesian Chemical Reaction Neural Network (B-CRNN), a method to infer chemical reaction models and provide the associated uncertainty purely from data without prior knowledge of reaction templates.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp05083h</identifier><identifier>PMID: 36661226</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Algorithms ; Artificial neural networks ; Bayesian analysis ; Chemical engineering ; Chemical reactions ; Embedding ; Markov chains ; Neural networks ; Uncertainty</subject><ispartof>Physical chemistry chemical physics : PCCP, 2023-02, Vol.25 (5), p.377-3717</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-d106b18c1e180a2819c365c9ef6ba554c7ab3bb38e17900691d3d18c1d6180b43</citedby><cites>FETCH-LOGICAL-c373t-d106b18c1e180a2819c365c9ef6ba554c7ab3bb38e17900691d3d18c1d6180b43</cites><orcidid>0000-0002-9756-2258 ; 0000-0002-3421-7414</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36661226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qiaofeng</creatorcontrib><creatorcontrib>Chen, Huaibo</creatorcontrib><creatorcontrib>Koenig, Benjamin C</creatorcontrib><creatorcontrib>Deng, Sili</creatorcontrib><title>Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Chemical reaction neural network (CRNN), a recently developed tool for autonomous discovery of reaction models, has been successfully demonstrated on a variety of chemical engineering and biochemical systems. It leverages the extraordinary data-fitting capacity of modern deep neural networks (DNNs) while preserving high interpretability and robustness by embedding widely applicable physical laws such as the law of mass action and the Arrhenius law. In this paper, we further developed Bayesian CRNN to not only reconstruct but also quantify the uncertainty of chemical kinetic models from data. Two methods, the Markov chain Monte Carlo algorithm and variational inference, were used to perform the Bayesian CRNN, with the latter mainly adopted for its speed. We demonstrated the capability of Bayesian CRNN in the kinetic uncertainty quantification of different types of chemical systems and discussed the importance of embedding physical laws in data-driven modeling. Finally, we discussed the adaptation of Bayesian CRNN for incomplete measurements and model mixing for global uncertainty quantification.
We develop Bayesian Chemical Reaction Neural Network (B-CRNN), a method to infer chemical reaction models and provide the associated uncertainty purely from data without prior knowledge of reaction templates.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bayesian analysis</subject><subject>Chemical engineering</subject><subject>Chemical reactions</subject><subject>Embedding</subject><subject>Markov chains</subject><subject>Neural networks</subject><subject>Uncertainty</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3el4EWEan60aXrU-WPCQA968lDSNGXZ2mTmB7L_3szNCZ6S8D758ngPgFMErxEk5U2DxRLmkJHZHhiijJK0hCzb390LOgBHzs0hhChH5BAMCKUUYUyH4OOOr6RTXCdiJnsleJdYyYVXRidaBhvfWvovYxdJa2zCgzfa9Ca4ZKFiQYkkaCGt50r7VfIZuPaqjTHrgGNw0PLOyZPtOQLvjw9v40k6fXl6Ht9OU0EK4tMGQVojJpBEDHLMUCkIzUUpW1rzPM9EwWtS14RJVJQQ0hI1pFn7hsYPdUZG4HKTu7TmM0jnq145IbuOaxk7rXBBGc4wJTjSi390boLVsbuoCoSLsmQoqquNEtY4Z2VbLa3quV1VCFbrkVf3ePz6M_JJxOfbyFD3stnR3xlHcLYB1old9W9n5BuzOYY2</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Li, Qiaofeng</creator><creator>Chen, Huaibo</creator><creator>Koenig, Benjamin C</creator><creator>Deng, Sili</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9756-2258</orcidid><orcidid>https://orcid.org/0000-0002-3421-7414</orcidid></search><sort><creationdate>20230201</creationdate><title>Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification</title><author>Li, Qiaofeng ; Chen, Huaibo ; Koenig, Benjamin C ; Deng, Sili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-d106b18c1e180a2819c365c9ef6ba554c7ab3bb38e17900691d3d18c1d6180b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bayesian analysis</topic><topic>Chemical engineering</topic><topic>Chemical reactions</topic><topic>Embedding</topic><topic>Markov chains</topic><topic>Neural networks</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiaofeng</creatorcontrib><creatorcontrib>Chen, Huaibo</creatorcontrib><creatorcontrib>Koenig, Benjamin C</creatorcontrib><creatorcontrib>Deng, Sili</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiaofeng</au><au>Chen, Huaibo</au><au>Koenig, Benjamin C</au><au>Deng, Sili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>25</volume><issue>5</issue><spage>377</spage><epage>3717</epage><pages>377-3717</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Chemical reaction neural network (CRNN), a recently developed tool for autonomous discovery of reaction models, has been successfully demonstrated on a variety of chemical engineering and biochemical systems. It leverages the extraordinary data-fitting capacity of modern deep neural networks (DNNs) while preserving high interpretability and robustness by embedding widely applicable physical laws such as the law of mass action and the Arrhenius law. In this paper, we further developed Bayesian CRNN to not only reconstruct but also quantify the uncertainty of chemical kinetic models from data. Two methods, the Markov chain Monte Carlo algorithm and variational inference, were used to perform the Bayesian CRNN, with the latter mainly adopted for its speed. We demonstrated the capability of Bayesian CRNN in the kinetic uncertainty quantification of different types of chemical systems and discussed the importance of embedding physical laws in data-driven modeling. Finally, we discussed the adaptation of Bayesian CRNN for incomplete measurements and model mixing for global uncertainty quantification.
We develop Bayesian Chemical Reaction Neural Network (B-CRNN), a method to infer chemical reaction models and provide the associated uncertainty purely from data without prior knowledge of reaction templates.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36661226</pmid><doi>10.1039/d2cp05083h</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9756-2258</orcidid><orcidid>https://orcid.org/0000-0002-3421-7414</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-02, Vol.25 (5), p.377-3717 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2CP05083H |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Algorithms Artificial neural networks Bayesian analysis Chemical engineering Chemical reactions Embedding Markov chains Neural networks Uncertainty |
title | Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20chemical%20reaction%20neural%20network%20for%20autonomous%20kinetic%20uncertainty%20quantification&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Li,%20Qiaofeng&rft.date=2023-02-01&rft.volume=25&rft.issue=5&rft.spage=377&rft.epage=3717&rft.pages=377-3717&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp05083h&rft_dat=%3Cproquest_cross%3E2771279981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771279981&rft_id=info:pmid/36661226&rfr_iscdi=true |