Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach
We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EO...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2022-09, Vol.24 (35), p.2728-2741 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2741 |
---|---|
container_issue | 35 |
container_start_page | 2728 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 24 |
creator | Arias-Martinez, Juan E Cunha, Leonardo A Oosterbaan, Katherine J Lee, Joonho Head-Gordon, Martin |
description | We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EOM) formalisms. Three schemes are employed to successfully address the convergence difficulties associated with the coupled-cluster equations, and the spin contamination resulting from the use of a spin symmetry-broken reference, in the case of excitations. In order to gauge the inherent potential of the methods studied, an effort is made to provide reasonable basis set limit estimates for the transition energies. Overall, we find that the two best-performing schemes studied here for ΔCCSD are capable of predicting excitation and ionization energies with errors comparable to experimental accuracies. The proposed ΔCCSD schemes reduces statistical errors against experimental excitation energies by more than a factor of two when compared to the frozen-core core-valence separated (FC-CVS) EOM-CCSD approach - a successful variant of EOM-CCSD tailored towards core excitations.
A proper treatment of orbital relaxation and correlation, while addressing spin contamination and the shortcomings of the CVS, allows ΔCCSD to reach errors smaller than 0.5 eV compared to experimental X-ray absorption excitation energies. |
doi_str_mv | 10.1039/d2cp01998a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2CP01998A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714155151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-56b174026b285d9c9dc111fa01d744be2c8e2d82130af38a47164bb97339beb03</originalsourceid><addsrcrecordid>eNpd0c-L1TAQB_AgLri-9eJdKHoRoZpJ0jY5Pp4_YUEPei7pdLqbpa-pmRZ29683-yoreJoJfDJk8hXiJcj3ILX70CucJThn_RNxDqbWpZPWPH3sm_qZeM58I6WECvS54D3imvxCBcZEBd1iWPwS4lT4qS9yDffbkSZKV4G4GFI8Fr7gzKjkmTAMAfPtdR6pL3FceaFUcJiuxqwfpvRx7U79PKfo8fpCnA1-ZHrxt-7Er8-ffh6-lpffv3w77C9L1FYtZVV30Bip6k7ZqnfoegSAwUvoG2M6UmhJ9VaBln7Q1psGatN1rtHaddRJvROvt7mRl9By3ozwGuM0ES4tWKuNMhm93VB-2--VeGmPgZHG0U8UV25VI-sGnMq_tRNv_qM3cU1TXiErMFBVcFLvNoUpMica2jmFo093Lcj2IaT2ozr8OIW0z_jVhhPjo_sXov4DKauOhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714155151</pqid></control><display><type>article</type><title>Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Arias-Martinez, Juan E ; Cunha, Leonardo A ; Oosterbaan, Katherine J ; Lee, Joonho ; Head-Gordon, Martin</creator><creatorcontrib>Arias-Martinez, Juan E ; Cunha, Leonardo A ; Oosterbaan, Katherine J ; Lee, Joonho ; Head-Gordon, Martin</creatorcontrib><description>We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EOM) formalisms. Three schemes are employed to successfully address the convergence difficulties associated with the coupled-cluster equations, and the spin contamination resulting from the use of a spin symmetry-broken reference, in the case of excitations. In order to gauge the inherent potential of the methods studied, an effort is made to provide reasonable basis set limit estimates for the transition energies. Overall, we find that the two best-performing schemes studied here for ΔCCSD are capable of predicting excitation and ionization energies with errors comparable to experimental accuracies. The proposed ΔCCSD schemes reduces statistical errors against experimental excitation energies by more than a factor of two when compared to the frozen-core core-valence separated (FC-CVS) EOM-CCSD approach - a successful variant of EOM-CCSD tailored towards core excitations.
A proper treatment of orbital relaxation and correlation, while addressing spin contamination and the shortcomings of the CVS, allows ΔCCSD to reach errors smaller than 0.5 eV compared to experimental X-ray absorption excitation energies.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp01998a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Clusters ; Errors ; Excitation ; Ionization ; Organic chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-09, Vol.24 (35), p.2728-2741</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-56b174026b285d9c9dc111fa01d744be2c8e2d82130af38a47164bb97339beb03</citedby><cites>FETCH-LOGICAL-c382t-56b174026b285d9c9dc111fa01d744be2c8e2d82130af38a47164bb97339beb03</cites><orcidid>0000-0003-2671-2375 ; 0000-0003-3081-3988 ; 0000-0002-4309-6669 ; 0000-0002-9667-1081 ; 0000000326712375 ; 0000000330813988 ; 0000000296671081 ; 0000000243096669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1883424$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arias-Martinez, Juan E</creatorcontrib><creatorcontrib>Cunha, Leonardo A</creatorcontrib><creatorcontrib>Oosterbaan, Katherine J</creatorcontrib><creatorcontrib>Lee, Joonho</creatorcontrib><creatorcontrib>Head-Gordon, Martin</creatorcontrib><title>Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach</title><title>Physical chemistry chemical physics : PCCP</title><description>We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EOM) formalisms. Three schemes are employed to successfully address the convergence difficulties associated with the coupled-cluster equations, and the spin contamination resulting from the use of a spin symmetry-broken reference, in the case of excitations. In order to gauge the inherent potential of the methods studied, an effort is made to provide reasonable basis set limit estimates for the transition energies. Overall, we find that the two best-performing schemes studied here for ΔCCSD are capable of predicting excitation and ionization energies with errors comparable to experimental accuracies. The proposed ΔCCSD schemes reduces statistical errors against experimental excitation energies by more than a factor of two when compared to the frozen-core core-valence separated (FC-CVS) EOM-CCSD approach - a successful variant of EOM-CCSD tailored towards core excitations.
A proper treatment of orbital relaxation and correlation, while addressing spin contamination and the shortcomings of the CVS, allows ΔCCSD to reach errors smaller than 0.5 eV compared to experimental X-ray absorption excitation energies.</description><subject>Clusters</subject><subject>Errors</subject><subject>Excitation</subject><subject>Ionization</subject><subject>Organic chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0c-L1TAQB_AgLri-9eJdKHoRoZpJ0jY5Pp4_YUEPei7pdLqbpa-pmRZ29683-yoreJoJfDJk8hXiJcj3ILX70CucJThn_RNxDqbWpZPWPH3sm_qZeM58I6WECvS54D3imvxCBcZEBd1iWPwS4lT4qS9yDffbkSZKV4G4GFI8Fr7gzKjkmTAMAfPtdR6pL3FceaFUcJiuxqwfpvRx7U79PKfo8fpCnA1-ZHrxt-7Er8-ffh6-lpffv3w77C9L1FYtZVV30Bip6k7ZqnfoegSAwUvoG2M6UmhJ9VaBln7Q1psGatN1rtHaddRJvROvt7mRl9By3ozwGuM0ES4tWKuNMhm93VB-2--VeGmPgZHG0U8UV25VI-sGnMq_tRNv_qM3cU1TXiErMFBVcFLvNoUpMica2jmFo093Lcj2IaT2ozr8OIW0z_jVhhPjo_sXov4DKauOhg</recordid><startdate>20220914</startdate><enddate>20220914</enddate><creator>Arias-Martinez, Juan E</creator><creator>Cunha, Leonardo A</creator><creator>Oosterbaan, Katherine J</creator><creator>Lee, Joonho</creator><creator>Head-Gordon, Martin</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2671-2375</orcidid><orcidid>https://orcid.org/0000-0003-3081-3988</orcidid><orcidid>https://orcid.org/0000-0002-4309-6669</orcidid><orcidid>https://orcid.org/0000-0002-9667-1081</orcidid><orcidid>https://orcid.org/0000000326712375</orcidid><orcidid>https://orcid.org/0000000330813988</orcidid><orcidid>https://orcid.org/0000000296671081</orcidid><orcidid>https://orcid.org/0000000243096669</orcidid></search><sort><creationdate>20220914</creationdate><title>Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach</title><author>Arias-Martinez, Juan E ; Cunha, Leonardo A ; Oosterbaan, Katherine J ; Lee, Joonho ; Head-Gordon, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-56b174026b285d9c9dc111fa01d744be2c8e2d82130af38a47164bb97339beb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clusters</topic><topic>Errors</topic><topic>Excitation</topic><topic>Ionization</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias-Martinez, Juan E</creatorcontrib><creatorcontrib>Cunha, Leonardo A</creatorcontrib><creatorcontrib>Oosterbaan, Katherine J</creatorcontrib><creatorcontrib>Lee, Joonho</creatorcontrib><creatorcontrib>Head-Gordon, Martin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias-Martinez, Juan E</au><au>Cunha, Leonardo A</au><au>Oosterbaan, Katherine J</au><au>Lee, Joonho</au><au>Head-Gordon, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-09-14</date><risdate>2022</risdate><volume>24</volume><issue>35</issue><spage>2728</spage><epage>2741</epage><pages>2728-2741</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EOM) formalisms. Three schemes are employed to successfully address the convergence difficulties associated with the coupled-cluster equations, and the spin contamination resulting from the use of a spin symmetry-broken reference, in the case of excitations. In order to gauge the inherent potential of the methods studied, an effort is made to provide reasonable basis set limit estimates for the transition energies. Overall, we find that the two best-performing schemes studied here for ΔCCSD are capable of predicting excitation and ionization energies with errors comparable to experimental accuracies. The proposed ΔCCSD schemes reduces statistical errors against experimental excitation energies by more than a factor of two when compared to the frozen-core core-valence separated (FC-CVS) EOM-CCSD approach - a successful variant of EOM-CCSD tailored towards core excitations.
A proper treatment of orbital relaxation and correlation, while addressing spin contamination and the shortcomings of the CVS, allows ΔCCSD to reach errors smaller than 0.5 eV compared to experimental X-ray absorption excitation energies.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp01998a</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2671-2375</orcidid><orcidid>https://orcid.org/0000-0003-3081-3988</orcidid><orcidid>https://orcid.org/0000-0002-4309-6669</orcidid><orcidid>https://orcid.org/0000-0002-9667-1081</orcidid><orcidid>https://orcid.org/0000000326712375</orcidid><orcidid>https://orcid.org/0000000330813988</orcidid><orcidid>https://orcid.org/0000000296671081</orcidid><orcidid>https://orcid.org/0000000243096669</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2022-09, Vol.24 (35), p.2728-2741 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D2CP01998A |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Clusters Errors Excitation Ionization Organic chemistry |
title | Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20core%20excitation%20and%20ionization%20energies%20from%20a%20state-specific%20coupled-cluster%20singles%20and%20doubles%20approach&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Arias-Martinez,%20Juan%20E&rft.date=2022-09-14&rft.volume=24&rft.issue=35&rft.spage=2728&rft.epage=2741&rft.pages=2728-2741&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp01998a&rft_dat=%3Cproquest_cross%3E2714155151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714155151&rft_id=info:pmid/&rfr_iscdi=true |