Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach

We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-09, Vol.24 (35), p.2728-2741
Hauptverfasser: Arias-Martinez, Juan E, Cunha, Leonardo A, Oosterbaan, Katherine J, Lee, Joonho, Head-Gordon, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2741
container_issue 35
container_start_page 2728
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Arias-Martinez, Juan E
Cunha, Leonardo A
Oosterbaan, Katherine J
Lee, Joonho
Head-Gordon, Martin
description We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EOM) formalisms. Three schemes are employed to successfully address the convergence difficulties associated with the coupled-cluster equations, and the spin contamination resulting from the use of a spin symmetry-broken reference, in the case of excitations. In order to gauge the inherent potential of the methods studied, an effort is made to provide reasonable basis set limit estimates for the transition energies. Overall, we find that the two best-performing schemes studied here for ΔCCSD are capable of predicting excitation and ionization energies with errors comparable to experimental accuracies. The proposed ΔCCSD schemes reduces statistical errors against experimental excitation energies by more than a factor of two when compared to the frozen-core core-valence separated (FC-CVS) EOM-CCSD approach - a successful variant of EOM-CCSD tailored towards core excitations. A proper treatment of orbital relaxation and correlation, while addressing spin contamination and the shortcomings of the CVS, allows ΔCCSD to reach errors smaller than 0.5 eV compared to experimental X-ray absorption excitation energies.
doi_str_mv 10.1039/d2cp01998a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2CP01998A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714155151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-56b174026b285d9c9dc111fa01d744be2c8e2d82130af38a47164bb97339beb03</originalsourceid><addsrcrecordid>eNpd0c-L1TAQB_AgLri-9eJdKHoRoZpJ0jY5Pp4_YUEPei7pdLqbpa-pmRZ29683-yoreJoJfDJk8hXiJcj3ILX70CucJThn_RNxDqbWpZPWPH3sm_qZeM58I6WECvS54D3imvxCBcZEBd1iWPwS4lT4qS9yDffbkSZKV4G4GFI8Fr7gzKjkmTAMAfPtdR6pL3FceaFUcJiuxqwfpvRx7U79PKfo8fpCnA1-ZHrxt-7Er8-ffh6-lpffv3w77C9L1FYtZVV30Bip6k7ZqnfoegSAwUvoG2M6UmhJ9VaBln7Q1psGatN1rtHaddRJvROvt7mRl9By3ozwGuM0ES4tWKuNMhm93VB-2--VeGmPgZHG0U8UV25VI-sGnMq_tRNv_qM3cU1TXiErMFBVcFLvNoUpMica2jmFo093Lcj2IaT2ozr8OIW0z_jVhhPjo_sXov4DKauOhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714155151</pqid></control><display><type>article</type><title>Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Arias-Martinez, Juan E ; Cunha, Leonardo A ; Oosterbaan, Katherine J ; Lee, Joonho ; Head-Gordon, Martin</creator><creatorcontrib>Arias-Martinez, Juan E ; Cunha, Leonardo A ; Oosterbaan, Katherine J ; Lee, Joonho ; Head-Gordon, Martin</creatorcontrib><description>We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EOM) formalisms. Three schemes are employed to successfully address the convergence difficulties associated with the coupled-cluster equations, and the spin contamination resulting from the use of a spin symmetry-broken reference, in the case of excitations. In order to gauge the inherent potential of the methods studied, an effort is made to provide reasonable basis set limit estimates for the transition energies. Overall, we find that the two best-performing schemes studied here for ΔCCSD are capable of predicting excitation and ionization energies with errors comparable to experimental accuracies. The proposed ΔCCSD schemes reduces statistical errors against experimental excitation energies by more than a factor of two when compared to the frozen-core core-valence separated (FC-CVS) EOM-CCSD approach - a successful variant of EOM-CCSD tailored towards core excitations. A proper treatment of orbital relaxation and correlation, while addressing spin contamination and the shortcomings of the CVS, allows ΔCCSD to reach errors smaller than 0.5 eV compared to experimental X-ray absorption excitation energies.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp01998a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Clusters ; Errors ; Excitation ; Ionization ; Organic chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-09, Vol.24 (35), p.2728-2741</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-56b174026b285d9c9dc111fa01d744be2c8e2d82130af38a47164bb97339beb03</citedby><cites>FETCH-LOGICAL-c382t-56b174026b285d9c9dc111fa01d744be2c8e2d82130af38a47164bb97339beb03</cites><orcidid>0000-0003-2671-2375 ; 0000-0003-3081-3988 ; 0000-0002-4309-6669 ; 0000-0002-9667-1081 ; 0000000326712375 ; 0000000330813988 ; 0000000296671081 ; 0000000243096669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1883424$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Arias-Martinez, Juan E</creatorcontrib><creatorcontrib>Cunha, Leonardo A</creatorcontrib><creatorcontrib>Oosterbaan, Katherine J</creatorcontrib><creatorcontrib>Lee, Joonho</creatorcontrib><creatorcontrib>Head-Gordon, Martin</creatorcontrib><title>Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach</title><title>Physical chemistry chemical physics : PCCP</title><description>We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EOM) formalisms. Three schemes are employed to successfully address the convergence difficulties associated with the coupled-cluster equations, and the spin contamination resulting from the use of a spin symmetry-broken reference, in the case of excitations. In order to gauge the inherent potential of the methods studied, an effort is made to provide reasonable basis set limit estimates for the transition energies. Overall, we find that the two best-performing schemes studied here for ΔCCSD are capable of predicting excitation and ionization energies with errors comparable to experimental accuracies. The proposed ΔCCSD schemes reduces statistical errors against experimental excitation energies by more than a factor of two when compared to the frozen-core core-valence separated (FC-CVS) EOM-CCSD approach - a successful variant of EOM-CCSD tailored towards core excitations. A proper treatment of orbital relaxation and correlation, while addressing spin contamination and the shortcomings of the CVS, allows ΔCCSD to reach errors smaller than 0.5 eV compared to experimental X-ray absorption excitation energies.</description><subject>Clusters</subject><subject>Errors</subject><subject>Excitation</subject><subject>Ionization</subject><subject>Organic chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0c-L1TAQB_AgLri-9eJdKHoRoZpJ0jY5Pp4_YUEPei7pdLqbpa-pmRZ29683-yoreJoJfDJk8hXiJcj3ILX70CucJThn_RNxDqbWpZPWPH3sm_qZeM58I6WECvS54D3imvxCBcZEBd1iWPwS4lT4qS9yDffbkSZKV4G4GFI8Fr7gzKjkmTAMAfPtdR6pL3FceaFUcJiuxqwfpvRx7U79PKfo8fpCnA1-ZHrxt-7Er8-ffh6-lpffv3w77C9L1FYtZVV30Bip6k7ZqnfoegSAwUvoG2M6UmhJ9VaBln7Q1psGatN1rtHaddRJvROvt7mRl9By3ozwGuM0ES4tWKuNMhm93VB-2--VeGmPgZHG0U8UV25VI-sGnMq_tRNv_qM3cU1TXiErMFBVcFLvNoUpMica2jmFo093Lcj2IaT2ozr8OIW0z_jVhhPjo_sXov4DKauOhg</recordid><startdate>20220914</startdate><enddate>20220914</enddate><creator>Arias-Martinez, Juan E</creator><creator>Cunha, Leonardo A</creator><creator>Oosterbaan, Katherine J</creator><creator>Lee, Joonho</creator><creator>Head-Gordon, Martin</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2671-2375</orcidid><orcidid>https://orcid.org/0000-0003-3081-3988</orcidid><orcidid>https://orcid.org/0000-0002-4309-6669</orcidid><orcidid>https://orcid.org/0000-0002-9667-1081</orcidid><orcidid>https://orcid.org/0000000326712375</orcidid><orcidid>https://orcid.org/0000000330813988</orcidid><orcidid>https://orcid.org/0000000296671081</orcidid><orcidid>https://orcid.org/0000000243096669</orcidid></search><sort><creationdate>20220914</creationdate><title>Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach</title><author>Arias-Martinez, Juan E ; Cunha, Leonardo A ; Oosterbaan, Katherine J ; Lee, Joonho ; Head-Gordon, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-56b174026b285d9c9dc111fa01d744be2c8e2d82130af38a47164bb97339beb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clusters</topic><topic>Errors</topic><topic>Excitation</topic><topic>Ionization</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias-Martinez, Juan E</creatorcontrib><creatorcontrib>Cunha, Leonardo A</creatorcontrib><creatorcontrib>Oosterbaan, Katherine J</creatorcontrib><creatorcontrib>Lee, Joonho</creatorcontrib><creatorcontrib>Head-Gordon, Martin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias-Martinez, Juan E</au><au>Cunha, Leonardo A</au><au>Oosterbaan, Katherine J</au><au>Lee, Joonho</au><au>Head-Gordon, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-09-14</date><risdate>2022</risdate><volume>24</volume><issue>35</issue><spage>2728</spage><epage>2741</epage><pages>2728-2741</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We investigate the use of orbital-optimized references in conjunction with single-reference coupled-cluster theory with single and double substitutions (CCSD) for the study of core excitations and ionizations of 18 small organic molecules, without the use of response theory or equation-of-motion (EOM) formalisms. Three schemes are employed to successfully address the convergence difficulties associated with the coupled-cluster equations, and the spin contamination resulting from the use of a spin symmetry-broken reference, in the case of excitations. In order to gauge the inherent potential of the methods studied, an effort is made to provide reasonable basis set limit estimates for the transition energies. Overall, we find that the two best-performing schemes studied here for ΔCCSD are capable of predicting excitation and ionization energies with errors comparable to experimental accuracies. The proposed ΔCCSD schemes reduces statistical errors against experimental excitation energies by more than a factor of two when compared to the frozen-core core-valence separated (FC-CVS) EOM-CCSD approach - a successful variant of EOM-CCSD tailored towards core excitations. A proper treatment of orbital relaxation and correlation, while addressing spin contamination and the shortcomings of the CVS, allows ΔCCSD to reach errors smaller than 0.5 eV compared to experimental X-ray absorption excitation energies.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp01998a</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2671-2375</orcidid><orcidid>https://orcid.org/0000-0003-3081-3988</orcidid><orcidid>https://orcid.org/0000-0002-4309-6669</orcidid><orcidid>https://orcid.org/0000-0002-9667-1081</orcidid><orcidid>https://orcid.org/0000000326712375</orcidid><orcidid>https://orcid.org/0000000330813988</orcidid><orcidid>https://orcid.org/0000000296671081</orcidid><orcidid>https://orcid.org/0000000243096669</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-09, Vol.24 (35), p.2728-2741
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_D2CP01998A
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Clusters
Errors
Excitation
Ionization
Organic chemistry
title Accurate core excitation and ionization energies from a state-specific coupled-cluster singles and doubles approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20core%20excitation%20and%20ionization%20energies%20from%20a%20state-specific%20coupled-cluster%20singles%20and%20doubles%20approach&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Arias-Martinez,%20Juan%20E&rft.date=2022-09-14&rft.volume=24&rft.issue=35&rft.spage=2728&rft.epage=2741&rft.pages=2728-2741&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp01998a&rft_dat=%3Cproquest_cross%3E2714155151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714155151&rft_id=info:pmid/&rfr_iscdi=true