Predicting pharmaceutical crystal morphology using artificial intelligence

The crystal morphology of active pharmaceutical ingredients is a key attribute for product design, manufacturing and pharmacological performance. Currently, the morphology of pharmaceutical crystals is designed and controlled through resource intensive screening methods, which rely on trial-and-erro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2022-11, Vol.24 (43), p.7545-7553
Hauptverfasser: Wilkinson, Matthew R, Martinez-Hernandez, Uriel, Huggon, Laura K, Wilson, Chick C, Castro Dominguez, Bernardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7553
container_issue 43
container_start_page 7545
container_title CrystEngComm
container_volume 24
creator Wilkinson, Matthew R
Martinez-Hernandez, Uriel
Huggon, Laura K
Wilson, Chick C
Castro Dominguez, Bernardo
description The crystal morphology of active pharmaceutical ingredients is a key attribute for product design, manufacturing and pharmacological performance. Currently, the morphology of pharmaceutical crystals is designed and controlled through resource intensive screening methods, which rely on trial-and-error approaches and experience. The demand for a more efficient and sustainable approach has driven research into the development of 21st century predictive methods. In this work, we demonstrate how artificial intelligence offers extraordinary potential for developing predictive, data-driven morphology models. Here, machine learning algorithms were implemented to predict the morphology of crystalline products. Using publicly available data, key limitations were identified, highlighting the lack of systematic experimental detail. These issues were addressed through an in-house experimental screening campaign, which leveraged robotics to increase throughput and overcome the challenges associated with the inherently subjective morphology labelling. As a result, we show that data-driven models can predict crystal morphology with an accuracy of up to 87.9%. These results are proof of the predictive power of artificial intelligence for morphology prediction and pharmaceutical product design. We present the use of artificial intelligence to predict the morphology of crystallizing active pharmaceutical ingredients, first using publicly available data, and then using our own screening efforts to address the limitations we identified.
doi_str_mv 10.1039/d2ce00992g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2CE00992G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2732524104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-ca3cecc8d0ad87eb8cbc4528892c1717787394daf2d129c1f8d777e78571d1d13</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouK5evAsFb0I1k7Sb9CjruioLetBzyU7SbpZ-maSH_nu7VlTm8A68DzPwEHIJ9BYoz-40Q0NplrHyiMwgWSxiSTk__refkjPv95RCAkBn5OXNGW0x2KaMup1ytULTB4uqitANPoxZt67btVVbDlHvD5xywRYW7djZJpiqsqVp0JyTk0JV3lz85Jx8PK7el0_x5nX9vLzfxMhBhBgVR4MoNVVaCrOVuMUkZVJmDEGAEFLwLNGqYBpYhlBILYQwQqYC9Dh8Tq6nu51rP3vjQ75ve9eML3MmOEtZAjQZqZuJQtd670yRd87Wyg050PzgKn9gy9W3q_UIX02w8_jL_bnkX2d_ZvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2732524104</pqid></control><display><type>article</type><title>Predicting pharmaceutical crystal morphology using artificial intelligence</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Wilkinson, Matthew R ; Martinez-Hernandez, Uriel ; Huggon, Laura K ; Wilson, Chick C ; Castro Dominguez, Bernardo</creator><creatorcontrib>Wilkinson, Matthew R ; Martinez-Hernandez, Uriel ; Huggon, Laura K ; Wilson, Chick C ; Castro Dominguez, Bernardo</creatorcontrib><description>The crystal morphology of active pharmaceutical ingredients is a key attribute for product design, manufacturing and pharmacological performance. Currently, the morphology of pharmaceutical crystals is designed and controlled through resource intensive screening methods, which rely on trial-and-error approaches and experience. The demand for a more efficient and sustainable approach has driven research into the development of 21st century predictive methods. In this work, we demonstrate how artificial intelligence offers extraordinary potential for developing predictive, data-driven morphology models. Here, machine learning algorithms were implemented to predict the morphology of crystalline products. Using publicly available data, key limitations were identified, highlighting the lack of systematic experimental detail. These issues were addressed through an in-house experimental screening campaign, which leveraged robotics to increase throughput and overcome the challenges associated with the inherently subjective morphology labelling. As a result, we show that data-driven models can predict crystal morphology with an accuracy of up to 87.9%. These results are proof of the predictive power of artificial intelligence for morphology prediction and pharmaceutical product design. We present the use of artificial intelligence to predict the morphology of crystallizing active pharmaceutical ingredients, first using publicly available data, and then using our own screening efforts to address the limitations we identified.</description><identifier>ISSN: 1466-8033</identifier><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/d2ce00992g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Crystal morphology ; Crystals ; Machine learning ; Manufacturing engineering ; Morphology ; Pharmaceuticals ; Predictions ; Product design ; Robotics ; Screening</subject><ispartof>CrystEngComm, 2022-11, Vol.24 (43), p.7545-7553</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-ca3cecc8d0ad87eb8cbc4528892c1717787394daf2d129c1f8d777e78571d1d13</citedby><cites>FETCH-LOGICAL-c317t-ca3cecc8d0ad87eb8cbc4528892c1717787394daf2d129c1f8d777e78571d1d13</cites><orcidid>0000-0002-0872-4762 ; 0000-0002-9922-7912 ; 0000-0002-1039-132X ; 0000-0001-6635-1469 ; 0000-0001-5913-305X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Wilkinson, Matthew R</creatorcontrib><creatorcontrib>Martinez-Hernandez, Uriel</creatorcontrib><creatorcontrib>Huggon, Laura K</creatorcontrib><creatorcontrib>Wilson, Chick C</creatorcontrib><creatorcontrib>Castro Dominguez, Bernardo</creatorcontrib><title>Predicting pharmaceutical crystal morphology using artificial intelligence</title><title>CrystEngComm</title><description>The crystal morphology of active pharmaceutical ingredients is a key attribute for product design, manufacturing and pharmacological performance. Currently, the morphology of pharmaceutical crystals is designed and controlled through resource intensive screening methods, which rely on trial-and-error approaches and experience. The demand for a more efficient and sustainable approach has driven research into the development of 21st century predictive methods. In this work, we demonstrate how artificial intelligence offers extraordinary potential for developing predictive, data-driven morphology models. Here, machine learning algorithms were implemented to predict the morphology of crystalline products. Using publicly available data, key limitations were identified, highlighting the lack of systematic experimental detail. These issues were addressed through an in-house experimental screening campaign, which leveraged robotics to increase throughput and overcome the challenges associated with the inherently subjective morphology labelling. As a result, we show that data-driven models can predict crystal morphology with an accuracy of up to 87.9%. These results are proof of the predictive power of artificial intelligence for morphology prediction and pharmaceutical product design. We present the use of artificial intelligence to predict the morphology of crystallizing active pharmaceutical ingredients, first using publicly available data, and then using our own screening efforts to address the limitations we identified.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Crystal morphology</subject><subject>Crystals</subject><subject>Machine learning</subject><subject>Manufacturing engineering</subject><subject>Morphology</subject><subject>Pharmaceuticals</subject><subject>Predictions</subject><subject>Product design</subject><subject>Robotics</subject><subject>Screening</subject><issn>1466-8033</issn><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAQhoMouK5evAsFb0I1k7Sb9CjruioLetBzyU7SbpZ-maSH_nu7VlTm8A68DzPwEHIJ9BYoz-40Q0NplrHyiMwgWSxiSTk__refkjPv95RCAkBn5OXNGW0x2KaMup1ytULTB4uqitANPoxZt67btVVbDlHvD5xywRYW7djZJpiqsqVp0JyTk0JV3lz85Jx8PK7el0_x5nX9vLzfxMhBhBgVR4MoNVVaCrOVuMUkZVJmDEGAEFLwLNGqYBpYhlBILYQwQqYC9Dh8Tq6nu51rP3vjQ75ve9eML3MmOEtZAjQZqZuJQtd670yRd87Wyg050PzgKn9gy9W3q_UIX02w8_jL_bnkX2d_ZvE</recordid><startdate>20221107</startdate><enddate>20221107</enddate><creator>Wilkinson, Matthew R</creator><creator>Martinez-Hernandez, Uriel</creator><creator>Huggon, Laura K</creator><creator>Wilson, Chick C</creator><creator>Castro Dominguez, Bernardo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0872-4762</orcidid><orcidid>https://orcid.org/0000-0002-9922-7912</orcidid><orcidid>https://orcid.org/0000-0002-1039-132X</orcidid><orcidid>https://orcid.org/0000-0001-6635-1469</orcidid><orcidid>https://orcid.org/0000-0001-5913-305X</orcidid></search><sort><creationdate>20221107</creationdate><title>Predicting pharmaceutical crystal morphology using artificial intelligence</title><author>Wilkinson, Matthew R ; Martinez-Hernandez, Uriel ; Huggon, Laura K ; Wilson, Chick C ; Castro Dominguez, Bernardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-ca3cecc8d0ad87eb8cbc4528892c1717787394daf2d129c1f8d777e78571d1d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Crystal morphology</topic><topic>Crystals</topic><topic>Machine learning</topic><topic>Manufacturing engineering</topic><topic>Morphology</topic><topic>Pharmaceuticals</topic><topic>Predictions</topic><topic>Product design</topic><topic>Robotics</topic><topic>Screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilkinson, Matthew R</creatorcontrib><creatorcontrib>Martinez-Hernandez, Uriel</creatorcontrib><creatorcontrib>Huggon, Laura K</creatorcontrib><creatorcontrib>Wilson, Chick C</creatorcontrib><creatorcontrib>Castro Dominguez, Bernardo</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilkinson, Matthew R</au><au>Martinez-Hernandez, Uriel</au><au>Huggon, Laura K</au><au>Wilson, Chick C</au><au>Castro Dominguez, Bernardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting pharmaceutical crystal morphology using artificial intelligence</atitle><jtitle>CrystEngComm</jtitle><date>2022-11-07</date><risdate>2022</risdate><volume>24</volume><issue>43</issue><spage>7545</spage><epage>7553</epage><pages>7545-7553</pages><issn>1466-8033</issn><eissn>1466-8033</eissn><abstract>The crystal morphology of active pharmaceutical ingredients is a key attribute for product design, manufacturing and pharmacological performance. Currently, the morphology of pharmaceutical crystals is designed and controlled through resource intensive screening methods, which rely on trial-and-error approaches and experience. The demand for a more efficient and sustainable approach has driven research into the development of 21st century predictive methods. In this work, we demonstrate how artificial intelligence offers extraordinary potential for developing predictive, data-driven morphology models. Here, machine learning algorithms were implemented to predict the morphology of crystalline products. Using publicly available data, key limitations were identified, highlighting the lack of systematic experimental detail. These issues were addressed through an in-house experimental screening campaign, which leveraged robotics to increase throughput and overcome the challenges associated with the inherently subjective morphology labelling. As a result, we show that data-driven models can predict crystal morphology with an accuracy of up to 87.9%. These results are proof of the predictive power of artificial intelligence for morphology prediction and pharmaceutical product design. We present the use of artificial intelligence to predict the morphology of crystallizing active pharmaceutical ingredients, first using publicly available data, and then using our own screening efforts to address the limitations we identified.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ce00992g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0872-4762</orcidid><orcidid>https://orcid.org/0000-0002-9922-7912</orcidid><orcidid>https://orcid.org/0000-0002-1039-132X</orcidid><orcidid>https://orcid.org/0000-0001-6635-1469</orcidid><orcidid>https://orcid.org/0000-0001-5913-305X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1466-8033
ispartof CrystEngComm, 2022-11, Vol.24 (43), p.7545-7553
issn 1466-8033
1466-8033
language eng
recordid cdi_crossref_primary_10_1039_D2CE00992G
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Automation
Crystal morphology
Crystals
Machine learning
Manufacturing engineering
Morphology
Pharmaceuticals
Predictions
Product design
Robotics
Screening
title Predicting pharmaceutical crystal morphology using artificial intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20pharmaceutical%20crystal%20morphology%20using%20artificial%20intelligence&rft.jtitle=CrystEngComm&rft.au=Wilkinson,%20Matthew%20R&rft.date=2022-11-07&rft.volume=24&rft.issue=43&rft.spage=7545&rft.epage=7553&rft.pages=7545-7553&rft.issn=1466-8033&rft.eissn=1466-8033&rft_id=info:doi/10.1039/d2ce00992g&rft_dat=%3Cproquest_cross%3E2732524104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2732524104&rft_id=info:pmid/&rfr_iscdi=true