Interfacial modulation and plasmonic effect mediated high-brightness green light sources in a single Ga-doped ZnO microwire based heterojunction

Heterostructure manufacturing has been extensively studied as an indispensable footstone in progressive semiconductor optoelectronic devices due to the constituent materials, interfacial states and electronic transport capabilities, thus enabling competitive candidates to construct novel devices and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2022-10, Vol.24 (38), p.6642-6653
Hauptverfasser: Liu, Xingjie, Liu, Maosheng, Zhu, Rongde, Li, Binghui, Wan, Peng, Shi, Daning, Kan, Caixia, Jiang, Mingming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heterostructure manufacturing has been extensively studied as an indispensable footstone in progressive semiconductor optoelectronic devices due to the constituent materials, interfacial states and electronic transport capabilities, thus enabling competitive candidates to construct novel devices and expand new academic fields. Herein, we proposed and constructed a unique green light-emitting diode (LED), which contains a Ga-doped ZnO microwire covered with Au nanoparticles (AuNPs@ZnO:Ga MW), a MgO buffer layer and a p-type InGaN template. The LED can exhibit high-brightness, highly-stable and nearly droop-free green light-emitting features. To probe into the electroluminescence mechanism, a band alignment modification at the ZnO:Ga/InGaN heterointerface can be fulfilled in the presence of a MgO buffer layer, which can effectively avoid the electronhole recombination occurring at the InGaN side. Meanwhile capping AuNPs can availably achieve strengthening of the charge transport properties, enhancement of the forward current density of the diode, and magnification of the green light emission on the basis of the plasmonic effect. The carefully designed LED structures revealed much superior electroluminescence properties over a broad scope of carrier density because of the improvement of hole injection and electron confinement, thus moderately suppressing the efficiency droop induced by InGaN materials. This work provides clear grounds for the achievement of high-efficiency visible light sources and understanding the microscopic mechanism of reducing the electron leakage, increasing the hole injection efficiency and enhancing the electroluminescence efficiency. High-brightness, stable and nearly droop-free green LEDs based on a carefully constructed n-AuNPs@ZnO:Ga MW/MgO/p-InGaN heterojunction were proposed and investigated experimentally.
ISSN:1466-8033
1466-8033
DOI:10.1039/d2ce00917j