Synergetic osteogenesis of extracellular vesicles and loading RGD colonized on 3D-printed titanium implants

Titanium (Ti) and its alloys have been universally used as surgical implants, and the clinical need for modifying titanium surfaces to accelerate early stage osseointegration and prevent implant loosening is in huge demand. 3D printing technology is an accurate and controllable method to create tita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials science 2022-08, Vol.1 (17), p.4773-4784
Hauptverfasser: Ma, Shiqing, Li, Xuewen, Hu, Han, Ma, Xinying, Zhao, Zhezhe, Deng, Shu, Wang, Jie, Zhang, Leyu, Wu, Chenxuan, Liu, Zihao, Wang, Yonglan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4784
container_issue 17
container_start_page 4773
container_title Biomaterials science
container_volume 1
creator Ma, Shiqing
Li, Xuewen
Hu, Han
Ma, Xinying
Zhao, Zhezhe
Deng, Shu
Wang, Jie
Zhang, Leyu
Wu, Chenxuan
Liu, Zihao
Wang, Yonglan
description Titanium (Ti) and its alloys have been universally used as surgical implants, and the clinical need for modifying titanium surfaces to accelerate early stage osseointegration and prevent implant loosening is in huge demand. 3D printing technology is an accurate and controllable method to create titanium implants with complex nanostructures, which provide enough space to react and fit in the microenvironment of cells. Recently, extracellular vesicles (EVs) have attracted attention in promoting osteogenesis. The vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) have been proved to pack osteogenic-relative RNAs thereby regulating the osteogenic differentiation and mineralization of the target BMSCs. Arg-Gly-Asp (RGD)-derived peptides are typical peptides used to improve cell attachment and proliferation in bone tissue engineering. A novel strategy is proposed to load RGD-derived peptides on EVs with a fusion peptide (EVs RGD ) and colonize EVs RGD on the titanium surface via a specific bonding peptide. In this study, we verify that the presence of EVs RGD enables the realization of the synergetic effect of EVs and RGD, enhancing the osteogenic differentiation and mineralization of BMSCs in vitro , resulting in satisfactory osseointegration around implants in vivo . In this study, EVs are anchored on titanium successfully in a method supported by a fusion peptide in order to promote the osteogenic. This method is more convenient and effective than typical modifying techniques.
doi_str_mv 10.1039/d2bm00725h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D2BM00725H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705637594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-865a9dc4e3cceeb53af3a6df2b39409fd9b6e1f79d2054d2f53b10dff174dbe33</originalsourceid><addsrcrecordid>eNpFkEtLAzEQgBdRsNRevAsBb8JqXrvbHLXVVqgIPs5LNpnU1G1Sk6xYf72rFZ3LPPiYGb4sOyb4nGAmLjRt1hhXtHjZywYU8yrnYy72_2qGD7NRjCvcR1UJXJJB9vq4dRCWkKxCPibwS3AQbUTeIPhIQSpo266VAb33Y9VCRNJp1HqprVuih9kUKd96Zz9BI-8Qm-abYF3qu2STdLZbI7vetNKleJQdGNlGGP3mYfZ8c_00meeL-9nt5HKRK0Z4ysdlIYVWHJhSAE3BpGGy1IY2THAsjBZNCcRUQlNccE1NwRqCtTGk4roBxobZ6W7vJvi3DmKqV74Lrj9Z0woXJasKwXvqbEep4GMMYOr-8bUM25rg-ttnPaVXdz8-5z18soNDVH_cv2_2BX45dAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705637594</pqid></control><display><type>article</type><title>Synergetic osteogenesis of extracellular vesicles and loading RGD colonized on 3D-printed titanium implants</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ma, Shiqing ; Li, Xuewen ; Hu, Han ; Ma, Xinying ; Zhao, Zhezhe ; Deng, Shu ; Wang, Jie ; Zhang, Leyu ; Wu, Chenxuan ; Liu, Zihao ; Wang, Yonglan</creator><creatorcontrib>Ma, Shiqing ; Li, Xuewen ; Hu, Han ; Ma, Xinying ; Zhao, Zhezhe ; Deng, Shu ; Wang, Jie ; Zhang, Leyu ; Wu, Chenxuan ; Liu, Zihao ; Wang, Yonglan</creatorcontrib><description>Titanium (Ti) and its alloys have been universally used as surgical implants, and the clinical need for modifying titanium surfaces to accelerate early stage osseointegration and prevent implant loosening is in huge demand. 3D printing technology is an accurate and controllable method to create titanium implants with complex nanostructures, which provide enough space to react and fit in the microenvironment of cells. Recently, extracellular vesicles (EVs) have attracted attention in promoting osteogenesis. The vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) have been proved to pack osteogenic-relative RNAs thereby regulating the osteogenic differentiation and mineralization of the target BMSCs. Arg-Gly-Asp (RGD)-derived peptides are typical peptides used to improve cell attachment and proliferation in bone tissue engineering. A novel strategy is proposed to load RGD-derived peptides on EVs with a fusion peptide (EVs RGD ) and colonize EVs RGD on the titanium surface via a specific bonding peptide. In this study, we verify that the presence of EVs RGD enables the realization of the synergetic effect of EVs and RGD, enhancing the osteogenic differentiation and mineralization of BMSCs in vitro , resulting in satisfactory osseointegration around implants in vivo . In this study, EVs are anchored on titanium successfully in a method supported by a fusion peptide in order to promote the osteogenic. This method is more convenient and effective than typical modifying techniques.</description><identifier>ISSN: 2047-4830</identifier><identifier>EISSN: 2047-4849</identifier><identifier>DOI: 10.1039/d2bm00725h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bone marrow ; Differentiation (biology) ; Extracellular vesicles ; Mineralization ; Peptides ; Stem cells ; Surgical implants ; Three dimensional printing ; Tissue engineering ; Titanium ; Transplants &amp; implants ; Vesicles</subject><ispartof>Biomaterials science, 2022-08, Vol.1 (17), p.4773-4784</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-865a9dc4e3cceeb53af3a6df2b39409fd9b6e1f79d2054d2f53b10dff174dbe33</citedby><cites>FETCH-LOGICAL-c314t-865a9dc4e3cceeb53af3a6df2b39409fd9b6e1f79d2054d2f53b10dff174dbe33</cites><orcidid>0000-0003-4878-1275 ; 0000-0002-9933-6895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ma, Shiqing</creatorcontrib><creatorcontrib>Li, Xuewen</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Ma, Xinying</creatorcontrib><creatorcontrib>Zhao, Zhezhe</creatorcontrib><creatorcontrib>Deng, Shu</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Zhang, Leyu</creatorcontrib><creatorcontrib>Wu, Chenxuan</creatorcontrib><creatorcontrib>Liu, Zihao</creatorcontrib><creatorcontrib>Wang, Yonglan</creatorcontrib><title>Synergetic osteogenesis of extracellular vesicles and loading RGD colonized on 3D-printed titanium implants</title><title>Biomaterials science</title><description>Titanium (Ti) and its alloys have been universally used as surgical implants, and the clinical need for modifying titanium surfaces to accelerate early stage osseointegration and prevent implant loosening is in huge demand. 3D printing technology is an accurate and controllable method to create titanium implants with complex nanostructures, which provide enough space to react and fit in the microenvironment of cells. Recently, extracellular vesicles (EVs) have attracted attention in promoting osteogenesis. The vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) have been proved to pack osteogenic-relative RNAs thereby regulating the osteogenic differentiation and mineralization of the target BMSCs. Arg-Gly-Asp (RGD)-derived peptides are typical peptides used to improve cell attachment and proliferation in bone tissue engineering. A novel strategy is proposed to load RGD-derived peptides on EVs with a fusion peptide (EVs RGD ) and colonize EVs RGD on the titanium surface via a specific bonding peptide. In this study, we verify that the presence of EVs RGD enables the realization of the synergetic effect of EVs and RGD, enhancing the osteogenic differentiation and mineralization of BMSCs in vitro , resulting in satisfactory osseointegration around implants in vivo . In this study, EVs are anchored on titanium successfully in a method supported by a fusion peptide in order to promote the osteogenic. This method is more convenient and effective than typical modifying techniques.</description><subject>Bone marrow</subject><subject>Differentiation (biology)</subject><subject>Extracellular vesicles</subject><subject>Mineralization</subject><subject>Peptides</subject><subject>Stem cells</subject><subject>Surgical implants</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Titanium</subject><subject>Transplants &amp; implants</subject><subject>Vesicles</subject><issn>2047-4830</issn><issn>2047-4849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEQgBdRsNRevAsBb8JqXrvbHLXVVqgIPs5LNpnU1G1Sk6xYf72rFZ3LPPiYGb4sOyb4nGAmLjRt1hhXtHjZywYU8yrnYy72_2qGD7NRjCvcR1UJXJJB9vq4dRCWkKxCPibwS3AQbUTeIPhIQSpo266VAb33Y9VCRNJp1HqprVuih9kUKd96Zz9BI-8Qm-abYF3qu2STdLZbI7vetNKleJQdGNlGGP3mYfZ8c_00meeL-9nt5HKRK0Z4ysdlIYVWHJhSAE3BpGGy1IY2THAsjBZNCcRUQlNccE1NwRqCtTGk4roBxobZ6W7vJvi3DmKqV74Lrj9Z0woXJasKwXvqbEep4GMMYOr-8bUM25rg-ttnPaVXdz8-5z18soNDVH_cv2_2BX45dAA</recordid><startdate>20220824</startdate><enddate>20220824</enddate><creator>Ma, Shiqing</creator><creator>Li, Xuewen</creator><creator>Hu, Han</creator><creator>Ma, Xinying</creator><creator>Zhao, Zhezhe</creator><creator>Deng, Shu</creator><creator>Wang, Jie</creator><creator>Zhang, Leyu</creator><creator>Wu, Chenxuan</creator><creator>Liu, Zihao</creator><creator>Wang, Yonglan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4878-1275</orcidid><orcidid>https://orcid.org/0000-0002-9933-6895</orcidid></search><sort><creationdate>20220824</creationdate><title>Synergetic osteogenesis of extracellular vesicles and loading RGD colonized on 3D-printed titanium implants</title><author>Ma, Shiqing ; Li, Xuewen ; Hu, Han ; Ma, Xinying ; Zhao, Zhezhe ; Deng, Shu ; Wang, Jie ; Zhang, Leyu ; Wu, Chenxuan ; Liu, Zihao ; Wang, Yonglan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-865a9dc4e3cceeb53af3a6df2b39409fd9b6e1f79d2054d2f53b10dff174dbe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bone marrow</topic><topic>Differentiation (biology)</topic><topic>Extracellular vesicles</topic><topic>Mineralization</topic><topic>Peptides</topic><topic>Stem cells</topic><topic>Surgical implants</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Titanium</topic><topic>Transplants &amp; implants</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shiqing</creatorcontrib><creatorcontrib>Li, Xuewen</creatorcontrib><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Ma, Xinying</creatorcontrib><creatorcontrib>Zhao, Zhezhe</creatorcontrib><creatorcontrib>Deng, Shu</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Zhang, Leyu</creatorcontrib><creatorcontrib>Wu, Chenxuan</creatorcontrib><creatorcontrib>Liu, Zihao</creatorcontrib><creatorcontrib>Wang, Yonglan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Biomaterials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shiqing</au><au>Li, Xuewen</au><au>Hu, Han</au><au>Ma, Xinying</au><au>Zhao, Zhezhe</au><au>Deng, Shu</au><au>Wang, Jie</au><au>Zhang, Leyu</au><au>Wu, Chenxuan</au><au>Liu, Zihao</au><au>Wang, Yonglan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergetic osteogenesis of extracellular vesicles and loading RGD colonized on 3D-printed titanium implants</atitle><jtitle>Biomaterials science</jtitle><date>2022-08-24</date><risdate>2022</risdate><volume>1</volume><issue>17</issue><spage>4773</spage><epage>4784</epage><pages>4773-4784</pages><issn>2047-4830</issn><eissn>2047-4849</eissn><abstract>Titanium (Ti) and its alloys have been universally used as surgical implants, and the clinical need for modifying titanium surfaces to accelerate early stage osseointegration and prevent implant loosening is in huge demand. 3D printing technology is an accurate and controllable method to create titanium implants with complex nanostructures, which provide enough space to react and fit in the microenvironment of cells. Recently, extracellular vesicles (EVs) have attracted attention in promoting osteogenesis. The vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) have been proved to pack osteogenic-relative RNAs thereby regulating the osteogenic differentiation and mineralization of the target BMSCs. Arg-Gly-Asp (RGD)-derived peptides are typical peptides used to improve cell attachment and proliferation in bone tissue engineering. A novel strategy is proposed to load RGD-derived peptides on EVs with a fusion peptide (EVs RGD ) and colonize EVs RGD on the titanium surface via a specific bonding peptide. In this study, we verify that the presence of EVs RGD enables the realization of the synergetic effect of EVs and RGD, enhancing the osteogenic differentiation and mineralization of BMSCs in vitro , resulting in satisfactory osseointegration around implants in vivo . In this study, EVs are anchored on titanium successfully in a method supported by a fusion peptide in order to promote the osteogenic. This method is more convenient and effective than typical modifying techniques.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2bm00725h</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4878-1275</orcidid><orcidid>https://orcid.org/0000-0002-9933-6895</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2047-4830
ispartof Biomaterials science, 2022-08, Vol.1 (17), p.4773-4784
issn 2047-4830
2047-4849
language eng
recordid cdi_crossref_primary_10_1039_D2BM00725H
source Royal Society Of Chemistry Journals 2008-
subjects Bone marrow
Differentiation (biology)
Extracellular vesicles
Mineralization
Peptides
Stem cells
Surgical implants
Three dimensional printing
Tissue engineering
Titanium
Transplants & implants
Vesicles
title Synergetic osteogenesis of extracellular vesicles and loading RGD colonized on 3D-printed titanium implants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergetic%20osteogenesis%20of%20extracellular%20vesicles%20and%20loading%20RGD%20colonized%20on%203D-printed%20titanium%20implants&rft.jtitle=Biomaterials%20science&rft.au=Ma,%20Shiqing&rft.date=2022-08-24&rft.volume=1&rft.issue=17&rft.spage=4773&rft.epage=4784&rft.pages=4773-4784&rft.issn=2047-4830&rft.eissn=2047-4849&rft_id=info:doi/10.1039/d2bm00725h&rft_dat=%3Cproquest_cross%3E2705637594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705637594&rft_id=info:pmid/&rfr_iscdi=true