Prediction of the photoelectrochemical performance of hematite electrodes using analytical data

Machine learning (ML) has been extensively utilized in various fields of chemistry, such as molecular design and optimization of the fabrication parameters of the material. However, there is still a difficulty in applying ML for devices/materials fabricated in a lab because plenty of data for accura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2022-03, Vol.147 (7), p.1313-132
Hauptverfasser: Nagai, Yuya, Katayama, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!