Biomimetic jagged micropatterns templated from photoswitchable liquid crystal topography for energy harvesting and sensing applications

In this study, an ingenious approach is developed using a fluorocarbon polymer tribosurface with jagged relief patterns, templated from the surface topographic microstructure of a photoresponsive liquid crystal polymer network (LCN), to significantly enhance the output performance of a triboelectric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2022-02, Vol.1 (5), p.188-1815
Hauptverfasser: Luo, Qiang, Gao, Jingjing, Lin, Siyang, Xiong, Delan, Sun, Haonan, Guo, Jinbao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1815
container_issue 5
container_start_page 188
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 1
creator Luo, Qiang
Gao, Jingjing
Lin, Siyang
Xiong, Delan
Sun, Haonan
Guo, Jinbao
description In this study, an ingenious approach is developed using a fluorocarbon polymer tribosurface with jagged relief patterns, templated from the surface topographic microstructure of a photoresponsive liquid crystal polymer network (LCN), to significantly enhance the output performance of a triboelectric nanogenerator (TENG). The obtained photoresponsive polydomain LCN, which can generate jagged patterns ( i.e. large 3D spikes) at the polymer surface by UV light irradiation, is exploited as a robust and reusable master mold to fabricate jagged patterns at a fluorocarbon polymer coating. Then, the fluorocarbon polymeric coating with jagged topographies is employed to construct a vertical contact-separation-mode TENG (FC-TENG). Owing to the fluorocarbon material selection and roughened morphologies of the tribosurface layer, the open circuit voltage and short circuit current of FC-TENG increased from 106.7 V, 0.69 μA to 194.9 V, 1.28 μA compared to TENG without the surface microstructure under the condition of 10 N force and 4 Hz contact separation frequency. Moreover, a self-powered LC device and wearable electronic sensor using an FC-TENG are demonstrated. This work may provide a new route for the fabrication of microstructured surfaces, rendering triboelectric energy harvesting more efficient. Biomimetic jagged micropatterns templated from photoswitchable liquid crystal polymer network topographies have been demonstrated for triboelectric energy harvesting and wearable sensing applications.
doi_str_mv 10.1039/d1tc05287j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1TC05287J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624904843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-993f05b8cadf198f4b9b42dbaef0c20cc04ad29f11a24e8bf38790df31d534823</originalsourceid><addsrcrecordid>eNpFkUtLxDAQgIMouOhevAsBb0I1SR-bHHV9s-BlPZc0jzalbbJJVukv8G9bd2WdywzDx8zwDQAXGN1glLJbiaNAOaGL9gjMCMpRssjT7PhQk-IUzENo0RQUF7RgM_B9b2xvehWNgC2vayVhb4S3jseo_BBgVL3reJz62tseusZGG75MFA2vOgU7s9kaCYUfQ-QdjNbZ2nPXjFBbD9WgfD3ChvtPFaIZasgHCYMawq52rjOCR2OHcA5ONO-Cmv_lM_Dx9LheviSr9-fX5d0qEYTimDCWapRXVHCpMaM6q1iVEVlxpZEgSAiUcUmYxpiTTNFKp3TBkNQplpMKStIzcLWf67zdbKejytZu_TCtLElBMoYymqUTdb2nJhMheKVL503P_VhiVP66Lh_werlz_TbBl3vYB3Hg_n-R_gBzQX_V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624904843</pqid></control><display><type>article</type><title>Biomimetic jagged micropatterns templated from photoswitchable liquid crystal topography for energy harvesting and sensing applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Luo, Qiang ; Gao, Jingjing ; Lin, Siyang ; Xiong, Delan ; Sun, Haonan ; Guo, Jinbao</creator><creatorcontrib>Luo, Qiang ; Gao, Jingjing ; Lin, Siyang ; Xiong, Delan ; Sun, Haonan ; Guo, Jinbao</creatorcontrib><description>In this study, an ingenious approach is developed using a fluorocarbon polymer tribosurface with jagged relief patterns, templated from the surface topographic microstructure of a photoresponsive liquid crystal polymer network (LCN), to significantly enhance the output performance of a triboelectric nanogenerator (TENG). The obtained photoresponsive polydomain LCN, which can generate jagged patterns ( i.e. large 3D spikes) at the polymer surface by UV light irradiation, is exploited as a robust and reusable master mold to fabricate jagged patterns at a fluorocarbon polymer coating. Then, the fluorocarbon polymeric coating with jagged topographies is employed to construct a vertical contact-separation-mode TENG (FC-TENG). Owing to the fluorocarbon material selection and roughened morphologies of the tribosurface layer, the open circuit voltage and short circuit current of FC-TENG increased from 106.7 V, 0.69 μA to 194.9 V, 1.28 μA compared to TENG without the surface microstructure under the condition of 10 N force and 4 Hz contact separation frequency. Moreover, a self-powered LC device and wearable electronic sensor using an FC-TENG are demonstrated. This work may provide a new route for the fabrication of microstructured surfaces, rendering triboelectric energy harvesting more efficient. Biomimetic jagged micropatterns templated from photoswitchable liquid crystal polymer network topographies have been demonstrated for triboelectric energy harvesting and wearable sensing applications.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d1tc05287j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Biomimetics ; Circuits ; Energy harvesting ; Light irradiation ; Liquid crystal polymers ; Liquid crystals ; Materials selection ; Micropatterning ; Microstructure ; Microstructured surfaces ; Nanogenerators ; Open circuit voltage ; Perfluorocarbons ; Polymer coatings ; Polymers ; Short circuit currents ; Ultraviolet radiation ; Vertical separation</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-02, Vol.1 (5), p.188-1815</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-993f05b8cadf198f4b9b42dbaef0c20cc04ad29f11a24e8bf38790df31d534823</citedby><cites>FETCH-LOGICAL-c281t-993f05b8cadf198f4b9b42dbaef0c20cc04ad29f11a24e8bf38790df31d534823</cites><orcidid>0000-0002-6451-0371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Luo, Qiang</creatorcontrib><creatorcontrib>Gao, Jingjing</creatorcontrib><creatorcontrib>Lin, Siyang</creatorcontrib><creatorcontrib>Xiong, Delan</creatorcontrib><creatorcontrib>Sun, Haonan</creatorcontrib><creatorcontrib>Guo, Jinbao</creatorcontrib><title>Biomimetic jagged micropatterns templated from photoswitchable liquid crystal topography for energy harvesting and sensing applications</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>In this study, an ingenious approach is developed using a fluorocarbon polymer tribosurface with jagged relief patterns, templated from the surface topographic microstructure of a photoresponsive liquid crystal polymer network (LCN), to significantly enhance the output performance of a triboelectric nanogenerator (TENG). The obtained photoresponsive polydomain LCN, which can generate jagged patterns ( i.e. large 3D spikes) at the polymer surface by UV light irradiation, is exploited as a robust and reusable master mold to fabricate jagged patterns at a fluorocarbon polymer coating. Then, the fluorocarbon polymeric coating with jagged topographies is employed to construct a vertical contact-separation-mode TENG (FC-TENG). Owing to the fluorocarbon material selection and roughened morphologies of the tribosurface layer, the open circuit voltage and short circuit current of FC-TENG increased from 106.7 V, 0.69 μA to 194.9 V, 1.28 μA compared to TENG without the surface microstructure under the condition of 10 N force and 4 Hz contact separation frequency. Moreover, a self-powered LC device and wearable electronic sensor using an FC-TENG are demonstrated. This work may provide a new route for the fabrication of microstructured surfaces, rendering triboelectric energy harvesting more efficient. Biomimetic jagged micropatterns templated from photoswitchable liquid crystal polymer network topographies have been demonstrated for triboelectric energy harvesting and wearable sensing applications.</description><subject>Biomimetics</subject><subject>Circuits</subject><subject>Energy harvesting</subject><subject>Light irradiation</subject><subject>Liquid crystal polymers</subject><subject>Liquid crystals</subject><subject>Materials selection</subject><subject>Micropatterning</subject><subject>Microstructure</subject><subject>Microstructured surfaces</subject><subject>Nanogenerators</subject><subject>Open circuit voltage</subject><subject>Perfluorocarbons</subject><subject>Polymer coatings</subject><subject>Polymers</subject><subject>Short circuit currents</subject><subject>Ultraviolet radiation</subject><subject>Vertical separation</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkUtLxDAQgIMouOhevAsBb0I1SR-bHHV9s-BlPZc0jzalbbJJVukv8G9bd2WdywzDx8zwDQAXGN1glLJbiaNAOaGL9gjMCMpRssjT7PhQk-IUzENo0RQUF7RgM_B9b2xvehWNgC2vayVhb4S3jseo_BBgVL3reJz62tseusZGG75MFA2vOgU7s9kaCYUfQ-QdjNbZ2nPXjFBbD9WgfD3ChvtPFaIZasgHCYMawq52rjOCR2OHcA5ONO-Cmv_lM_Dx9LheviSr9-fX5d0qEYTimDCWapRXVHCpMaM6q1iVEVlxpZEgSAiUcUmYxpiTTNFKp3TBkNQplpMKStIzcLWf67zdbKejytZu_TCtLElBMoYymqUTdb2nJhMheKVL503P_VhiVP66Lh_werlz_TbBl3vYB3Hg_n-R_gBzQX_V</recordid><startdate>20220203</startdate><enddate>20220203</enddate><creator>Luo, Qiang</creator><creator>Gao, Jingjing</creator><creator>Lin, Siyang</creator><creator>Xiong, Delan</creator><creator>Sun, Haonan</creator><creator>Guo, Jinbao</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6451-0371</orcidid></search><sort><creationdate>20220203</creationdate><title>Biomimetic jagged micropatterns templated from photoswitchable liquid crystal topography for energy harvesting and sensing applications</title><author>Luo, Qiang ; Gao, Jingjing ; Lin, Siyang ; Xiong, Delan ; Sun, Haonan ; Guo, Jinbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-993f05b8cadf198f4b9b42dbaef0c20cc04ad29f11a24e8bf38790df31d534823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomimetics</topic><topic>Circuits</topic><topic>Energy harvesting</topic><topic>Light irradiation</topic><topic>Liquid crystal polymers</topic><topic>Liquid crystals</topic><topic>Materials selection</topic><topic>Micropatterning</topic><topic>Microstructure</topic><topic>Microstructured surfaces</topic><topic>Nanogenerators</topic><topic>Open circuit voltage</topic><topic>Perfluorocarbons</topic><topic>Polymer coatings</topic><topic>Polymers</topic><topic>Short circuit currents</topic><topic>Ultraviolet radiation</topic><topic>Vertical separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Qiang</creatorcontrib><creatorcontrib>Gao, Jingjing</creatorcontrib><creatorcontrib>Lin, Siyang</creatorcontrib><creatorcontrib>Xiong, Delan</creatorcontrib><creatorcontrib>Sun, Haonan</creatorcontrib><creatorcontrib>Guo, Jinbao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Qiang</au><au>Gao, Jingjing</au><au>Lin, Siyang</au><au>Xiong, Delan</au><au>Sun, Haonan</au><au>Guo, Jinbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic jagged micropatterns templated from photoswitchable liquid crystal topography for energy harvesting and sensing applications</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2022-02-03</date><risdate>2022</risdate><volume>1</volume><issue>5</issue><spage>188</spage><epage>1815</epage><pages>188-1815</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>In this study, an ingenious approach is developed using a fluorocarbon polymer tribosurface with jagged relief patterns, templated from the surface topographic microstructure of a photoresponsive liquid crystal polymer network (LCN), to significantly enhance the output performance of a triboelectric nanogenerator (TENG). The obtained photoresponsive polydomain LCN, which can generate jagged patterns ( i.e. large 3D spikes) at the polymer surface by UV light irradiation, is exploited as a robust and reusable master mold to fabricate jagged patterns at a fluorocarbon polymer coating. Then, the fluorocarbon polymeric coating with jagged topographies is employed to construct a vertical contact-separation-mode TENG (FC-TENG). Owing to the fluorocarbon material selection and roughened morphologies of the tribosurface layer, the open circuit voltage and short circuit current of FC-TENG increased from 106.7 V, 0.69 μA to 194.9 V, 1.28 μA compared to TENG without the surface microstructure under the condition of 10 N force and 4 Hz contact separation frequency. Moreover, a self-powered LC device and wearable electronic sensor using an FC-TENG are demonstrated. This work may provide a new route for the fabrication of microstructured surfaces, rendering triboelectric energy harvesting more efficient. Biomimetic jagged micropatterns templated from photoswitchable liquid crystal polymer network topographies have been demonstrated for triboelectric energy harvesting and wearable sensing applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1tc05287j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6451-0371</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-02, Vol.1 (5), p.188-1815
issn 2050-7526
2050-7534
language eng
recordid cdi_crossref_primary_10_1039_D1TC05287J
source Royal Society Of Chemistry Journals 2008-
subjects Biomimetics
Circuits
Energy harvesting
Light irradiation
Liquid crystal polymers
Liquid crystals
Materials selection
Micropatterning
Microstructure
Microstructured surfaces
Nanogenerators
Open circuit voltage
Perfluorocarbons
Polymer coatings
Polymers
Short circuit currents
Ultraviolet radiation
Vertical separation
title Biomimetic jagged micropatterns templated from photoswitchable liquid crystal topography for energy harvesting and sensing applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20jagged%20micropatterns%20templated%20from%20photoswitchable%20liquid%20crystal%20topography%20for%20energy%20harvesting%20and%20sensing%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Luo,%20Qiang&rft.date=2022-02-03&rft.volume=1&rft.issue=5&rft.spage=188&rft.epage=1815&rft.pages=188-1815&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d1tc05287j&rft_dat=%3Cproquest_cross%3E2624904843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624904843&rft_id=info:pmid/&rfr_iscdi=true