Ultrathin oxysulfide semiconductors from liquid metal: a wet chemical approach
Metal oxychalcogenides are emerging as a new motif of group VI-A semiconductors with unique electronic properties. Among this family, two dimensional (2D) oxysulfide materials have been increasingly involved in the development of next-gen electronic and optoelectronic devices. However, current synth...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2021-09, Vol.9 (35), p.11815-11826 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11826 |
---|---|
container_issue | 35 |
container_start_page | 11815 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 9 |
creator | Nguyen, Chung Kim Low, Mei Xian Zavabeti, Ali Jannat, Azmira Murdoch, Billy J Della Gaspera, Enrico Orrell-Trigg, Rebecca Walia, Sumeet Elbourne, Aaron Truong, Vi Khanh McConville, Chris F Syed, Nitu Daeneke, Torben |
description | Metal oxychalcogenides are emerging as a new motif of group VI-A semiconductors with unique electronic properties. Among this family, two dimensional (2D) oxysulfide materials have been increasingly involved in the development of next-gen electronic and optoelectronic devices. However, current synthesis routes for 2D metal oxysulfides are still limited to vapor phase deposition techniques, hindering access to ultra-thin, well-defined, and highly crystalline structures. Herein, we report a new synthesis approach for atomically thin and large-area indium oxysulfide nanosheets (2D In
2
O
3−
x
S
x
,
x
is from 0 to 0.41). The process consists of printing indium oxide skins out of molten indium metal and a subsequent sulfur insertion conducted in a trisulfur radical anion solution. Back-gated field-effect transistors (FETs) based on 2D In
2
O
3−
x
S
x
reveal a notably high electron mobility of ∼20.4 cm
2
V
−1
s
−1
, corresponding to approximately 270% mobility enhancement over as-synthesized indium oxide. In addition, 2D In
2
O
3−
x
S
x
based photodetectors exhibit an excellent performance in ultraviolet (UV) region, with a photoresponsivity of ∼3.4 × 10
3
A W
−1
greatly surpassing that of many commercial materials. More importantly, the same reaction parameters can be employed to obtain 2D bismuth oxysulfide and 2D tin oxysulfide, offering a furnace-free approach for 2D oxysulfide semiconductor fabrication.
Liquid metal chemistry offers a new pathway towards the creation of functional 2D metal oxysulfides. |
doi_str_mv | 10.1039/d1tc01937f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1TC01937F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572823359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-bc70c421cf653bf02b6d306689326dc288bed79e0798c90f56cba829db3931f63</originalsourceid><addsrcrecordid>eNpF0M9LwzAUB_AgCo65i3ch4E2o5seaJt5kOhWGXrZzSV8S1tEuXZKi--_tnMx3ee_w4X3hi9A1JfeUcPVgaAJCFS_cGRoxkpOsyPn0_HQzcYkmMW7IMJIKKdQIfayaFHRa11vsv_exb1xtLI62rcFvTQ_Jh4hd8C1u6l1fG9zapJtHrPGXTRjWB6gbrLsueA3rK3ThdBPt5G-P0Wr-spy9ZYvP1_fZ0yIDJmnKKigITBkFJ3JeOcIqYTgRQirOhBmMrKwplCWFkqCIywVUWjJlKq44dYKP0e3x7xC7621M5cb3YTtEliwvmGSc52pQd0cFwccYrCu7ULc67EtKykNl5TNdzn4rmw_45ohDhJP7r5T_AF-IaDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572823359</pqid></control><display><type>article</type><title>Ultrathin oxysulfide semiconductors from liquid metal: a wet chemical approach</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Nguyen, Chung Kim ; Low, Mei Xian ; Zavabeti, Ali ; Jannat, Azmira ; Murdoch, Billy J ; Della Gaspera, Enrico ; Orrell-Trigg, Rebecca ; Walia, Sumeet ; Elbourne, Aaron ; Truong, Vi Khanh ; McConville, Chris F ; Syed, Nitu ; Daeneke, Torben</creator><creatorcontrib>Nguyen, Chung Kim ; Low, Mei Xian ; Zavabeti, Ali ; Jannat, Azmira ; Murdoch, Billy J ; Della Gaspera, Enrico ; Orrell-Trigg, Rebecca ; Walia, Sumeet ; Elbourne, Aaron ; Truong, Vi Khanh ; McConville, Chris F ; Syed, Nitu ; Daeneke, Torben</creatorcontrib><description>Metal oxychalcogenides are emerging as a new motif of group VI-A semiconductors with unique electronic properties. Among this family, two dimensional (2D) oxysulfide materials have been increasingly involved in the development of next-gen electronic and optoelectronic devices. However, current synthesis routes for 2D metal oxysulfides are still limited to vapor phase deposition techniques, hindering access to ultra-thin, well-defined, and highly crystalline structures. Herein, we report a new synthesis approach for atomically thin and large-area indium oxysulfide nanosheets (2D In
2
O
3−
x
S
x
,
x
is from 0 to 0.41). The process consists of printing indium oxide skins out of molten indium metal and a subsequent sulfur insertion conducted in a trisulfur radical anion solution. Back-gated field-effect transistors (FETs) based on 2D In
2
O
3−
x
S
x
reveal a notably high electron mobility of ∼20.4 cm
2
V
−1
s
−1
, corresponding to approximately 270% mobility enhancement over as-synthesized indium oxide. In addition, 2D In
2
O
3−
x
S
x
based photodetectors exhibit an excellent performance in ultraviolet (UV) region, with a photoresponsivity of ∼3.4 × 10
3
A W
−1
greatly surpassing that of many commercial materials. More importantly, the same reaction parameters can be employed to obtain 2D bismuth oxysulfide and 2D tin oxysulfide, offering a furnace-free approach for 2D oxysulfide semiconductor fabrication.
Liquid metal chemistry offers a new pathway towards the creation of functional 2D metal oxysulfides.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d1tc01937f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bismuth ; Electron mobility ; Field effect transistors ; Indium ; Indium oxides ; Liquid metals ; Optoelectronic devices ; Semiconductor devices ; Semiconductors ; Synthesis ; Vapor phases</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-09, Vol.9 (35), p.11815-11826</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-bc70c421cf653bf02b6d306689326dc288bed79e0798c90f56cba829db3931f63</citedby><cites>FETCH-LOGICAL-c281t-bc70c421cf653bf02b6d306689326dc288bed79e0798c90f56cba829db3931f63</cites><orcidid>0000-0002-7279-8600 ; 0000-0001-9948-5893 ; 0000-0002-4472-4372 ; 0000-0002-4775-127X ; 0000-0002-6016-6438 ; 0000-0003-1142-8646 ; 0000-0002-2995-0670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nguyen, Chung Kim</creatorcontrib><creatorcontrib>Low, Mei Xian</creatorcontrib><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Jannat, Azmira</creatorcontrib><creatorcontrib>Murdoch, Billy J</creatorcontrib><creatorcontrib>Della Gaspera, Enrico</creatorcontrib><creatorcontrib>Orrell-Trigg, Rebecca</creatorcontrib><creatorcontrib>Walia, Sumeet</creatorcontrib><creatorcontrib>Elbourne, Aaron</creatorcontrib><creatorcontrib>Truong, Vi Khanh</creatorcontrib><creatorcontrib>McConville, Chris F</creatorcontrib><creatorcontrib>Syed, Nitu</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><title>Ultrathin oxysulfide semiconductors from liquid metal: a wet chemical approach</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Metal oxychalcogenides are emerging as a new motif of group VI-A semiconductors with unique electronic properties. Among this family, two dimensional (2D) oxysulfide materials have been increasingly involved in the development of next-gen electronic and optoelectronic devices. However, current synthesis routes for 2D metal oxysulfides are still limited to vapor phase deposition techniques, hindering access to ultra-thin, well-defined, and highly crystalline structures. Herein, we report a new synthesis approach for atomically thin and large-area indium oxysulfide nanosheets (2D In
2
O
3−
x
S
x
,
x
is from 0 to 0.41). The process consists of printing indium oxide skins out of molten indium metal and a subsequent sulfur insertion conducted in a trisulfur radical anion solution. Back-gated field-effect transistors (FETs) based on 2D In
2
O
3−
x
S
x
reveal a notably high electron mobility of ∼20.4 cm
2
V
−1
s
−1
, corresponding to approximately 270% mobility enhancement over as-synthesized indium oxide. In addition, 2D In
2
O
3−
x
S
x
based photodetectors exhibit an excellent performance in ultraviolet (UV) region, with a photoresponsivity of ∼3.4 × 10
3
A W
−1
greatly surpassing that of many commercial materials. More importantly, the same reaction parameters can be employed to obtain 2D bismuth oxysulfide and 2D tin oxysulfide, offering a furnace-free approach for 2D oxysulfide semiconductor fabrication.
Liquid metal chemistry offers a new pathway towards the creation of functional 2D metal oxysulfides.</description><subject>Bismuth</subject><subject>Electron mobility</subject><subject>Field effect transistors</subject><subject>Indium</subject><subject>Indium oxides</subject><subject>Liquid metals</subject><subject>Optoelectronic devices</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Synthesis</subject><subject>Vapor phases</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpF0M9LwzAUB_AgCo65i3ch4E2o5seaJt5kOhWGXrZzSV8S1tEuXZKi--_tnMx3ee_w4X3hi9A1JfeUcPVgaAJCFS_cGRoxkpOsyPn0_HQzcYkmMW7IMJIKKdQIfayaFHRa11vsv_exb1xtLI62rcFvTQ_Jh4hd8C1u6l1fG9zapJtHrPGXTRjWB6gbrLsueA3rK3ThdBPt5G-P0Wr-spy9ZYvP1_fZ0yIDJmnKKigITBkFJ3JeOcIqYTgRQirOhBmMrKwplCWFkqCIywVUWjJlKq44dYKP0e3x7xC7621M5cb3YTtEliwvmGSc52pQd0cFwccYrCu7ULc67EtKykNl5TNdzn4rmw_45ohDhJP7r5T_AF-IaDY</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>Nguyen, Chung Kim</creator><creator>Low, Mei Xian</creator><creator>Zavabeti, Ali</creator><creator>Jannat, Azmira</creator><creator>Murdoch, Billy J</creator><creator>Della Gaspera, Enrico</creator><creator>Orrell-Trigg, Rebecca</creator><creator>Walia, Sumeet</creator><creator>Elbourne, Aaron</creator><creator>Truong, Vi Khanh</creator><creator>McConville, Chris F</creator><creator>Syed, Nitu</creator><creator>Daeneke, Torben</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7279-8600</orcidid><orcidid>https://orcid.org/0000-0001-9948-5893</orcidid><orcidid>https://orcid.org/0000-0002-4472-4372</orcidid><orcidid>https://orcid.org/0000-0002-4775-127X</orcidid><orcidid>https://orcid.org/0000-0002-6016-6438</orcidid><orcidid>https://orcid.org/0000-0003-1142-8646</orcidid><orcidid>https://orcid.org/0000-0002-2995-0670</orcidid></search><sort><creationdate>20210921</creationdate><title>Ultrathin oxysulfide semiconductors from liquid metal: a wet chemical approach</title><author>Nguyen, Chung Kim ; Low, Mei Xian ; Zavabeti, Ali ; Jannat, Azmira ; Murdoch, Billy J ; Della Gaspera, Enrico ; Orrell-Trigg, Rebecca ; Walia, Sumeet ; Elbourne, Aaron ; Truong, Vi Khanh ; McConville, Chris F ; Syed, Nitu ; Daeneke, Torben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-bc70c421cf653bf02b6d306689326dc288bed79e0798c90f56cba829db3931f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bismuth</topic><topic>Electron mobility</topic><topic>Field effect transistors</topic><topic>Indium</topic><topic>Indium oxides</topic><topic>Liquid metals</topic><topic>Optoelectronic devices</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Synthesis</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Chung Kim</creatorcontrib><creatorcontrib>Low, Mei Xian</creatorcontrib><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Jannat, Azmira</creatorcontrib><creatorcontrib>Murdoch, Billy J</creatorcontrib><creatorcontrib>Della Gaspera, Enrico</creatorcontrib><creatorcontrib>Orrell-Trigg, Rebecca</creatorcontrib><creatorcontrib>Walia, Sumeet</creatorcontrib><creatorcontrib>Elbourne, Aaron</creatorcontrib><creatorcontrib>Truong, Vi Khanh</creatorcontrib><creatorcontrib>McConville, Chris F</creatorcontrib><creatorcontrib>Syed, Nitu</creatorcontrib><creatorcontrib>Daeneke, Torben</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Chung Kim</au><au>Low, Mei Xian</au><au>Zavabeti, Ali</au><au>Jannat, Azmira</au><au>Murdoch, Billy J</au><au>Della Gaspera, Enrico</au><au>Orrell-Trigg, Rebecca</au><au>Walia, Sumeet</au><au>Elbourne, Aaron</au><au>Truong, Vi Khanh</au><au>McConville, Chris F</au><au>Syed, Nitu</au><au>Daeneke, Torben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin oxysulfide semiconductors from liquid metal: a wet chemical approach</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2021-09-21</date><risdate>2021</risdate><volume>9</volume><issue>35</issue><spage>11815</spage><epage>11826</epage><pages>11815-11826</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Metal oxychalcogenides are emerging as a new motif of group VI-A semiconductors with unique electronic properties. Among this family, two dimensional (2D) oxysulfide materials have been increasingly involved in the development of next-gen electronic and optoelectronic devices. However, current synthesis routes for 2D metal oxysulfides are still limited to vapor phase deposition techniques, hindering access to ultra-thin, well-defined, and highly crystalline structures. Herein, we report a new synthesis approach for atomically thin and large-area indium oxysulfide nanosheets (2D In
2
O
3−
x
S
x
,
x
is from 0 to 0.41). The process consists of printing indium oxide skins out of molten indium metal and a subsequent sulfur insertion conducted in a trisulfur radical anion solution. Back-gated field-effect transistors (FETs) based on 2D In
2
O
3−
x
S
x
reveal a notably high electron mobility of ∼20.4 cm
2
V
−1
s
−1
, corresponding to approximately 270% mobility enhancement over as-synthesized indium oxide. In addition, 2D In
2
O
3−
x
S
x
based photodetectors exhibit an excellent performance in ultraviolet (UV) region, with a photoresponsivity of ∼3.4 × 10
3
A W
−1
greatly surpassing that of many commercial materials. More importantly, the same reaction parameters can be employed to obtain 2D bismuth oxysulfide and 2D tin oxysulfide, offering a furnace-free approach for 2D oxysulfide semiconductor fabrication.
Liquid metal chemistry offers a new pathway towards the creation of functional 2D metal oxysulfides.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1tc01937f</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7279-8600</orcidid><orcidid>https://orcid.org/0000-0001-9948-5893</orcidid><orcidid>https://orcid.org/0000-0002-4472-4372</orcidid><orcidid>https://orcid.org/0000-0002-4775-127X</orcidid><orcidid>https://orcid.org/0000-0002-6016-6438</orcidid><orcidid>https://orcid.org/0000-0003-1142-8646</orcidid><orcidid>https://orcid.org/0000-0002-2995-0670</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-09, Vol.9 (35), p.11815-11826 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1TC01937F |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Bismuth Electron mobility Field effect transistors Indium Indium oxides Liquid metals Optoelectronic devices Semiconductor devices Semiconductors Synthesis Vapor phases |
title | Ultrathin oxysulfide semiconductors from liquid metal: a wet chemical approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20oxysulfide%20semiconductors%20from%20liquid%20metal:%20a%20wet%20chemical%20approach&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Nguyen,%20Chung%20Kim&rft.date=2021-09-21&rft.volume=9&rft.issue=35&rft.spage=11815&rft.epage=11826&rft.pages=11815-11826&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d1tc01937f&rft_dat=%3Cproquest_cross%3E2572823359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572823359&rft_id=info:pmid/&rfr_iscdi=true |