3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect
Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO 2 ) can release oxygen (O 2 ), and magnesium ions (Mg 2+ ), simultaneously, which is s...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2021-07, Vol.9 (28), p.5698-571 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | 28 |
container_start_page | 5698 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 9 |
creator | Peng, Ziyue Wang, Chengqiang Liu, Chun Xu, Haixia Wang, Yihan Liu, Yang Hu, Yunteng Li, Jianjun Jin, Yanglei Jiang, Cong Liu, Liangle Guo, Jiasong Zhu, Lixin |
description | Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO
2
) can release oxygen (O
2
), and magnesium ions (Mg
2+
), simultaneously, which is seen to have significant potential in bone substitutes. In this study, we used 3D printing technology to fabricate a MgO
2
-contained composite scaffold, which was composed of polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP) and magnesium peroxide (MgO
2
). Physical properties and O
2
/Mg
2+
releasing behavior of the scaffold were studied. Then, we evaluated the effects of the scaffold on cell survival, proliferation, migration, adhesion and osteogenic differentiation by the co-culture of bone marrow mesenchymal stem cells (BMSCs) and scaffold under normoxia and hypoxia
in vitro
. Finally, the osteogenic properties of the scaffold
in vivo
were evaluated
via
the rat femoral condylar bone defect model. The PCL/β-TCP/MgO
2
scaffold showed good mechanical properties and sustained O
2
and Mg
2+
release for about three weeks. Meanwhile, the scaffold showed appreciable promotion on the survival, proliferation, migration and osteogenic differentiation of BMSCs under hypoxia compared with control groups. The results of imaging studies and histological analysis showed that implantation of PCL/β-TCP/MgO
2
scaffold could promote seed cell survival and significantly increased new bone formation. In sum, the PCL/β-TCP/MgO
2
scaffold is promising with great potential for treating large bone defects.
Fabricate a MgO
2
-contained scaffold by 3D printing to improve ischemia and hypoxia in bone defect area. |
doi_str_mv | 10.1039/d1tb00178g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1TB00178G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548619282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-ff01a985eb796ffa98058e9b70d7a2929fadfa1715d5c61a9976a4138eb83abb3</originalsourceid><addsrcrecordid>eNpdkkFv1DAQhSMEolXphTvIEheEFNaOk9g50i0tSEUcKBK3aGKPs66SONhO1f1n_Lx6d8si4YtH9uc3T_OcZa8Z_cgob1aaxY5SJmT_LDstaEVzUTH5_FjTXyfZeQh3NC3JasnLl9kJL4uCV1KcZn_4JZm9nSJqMrthq2D2bgAV3YSrDiPk0VsFg7LLSOaNC_MGIq5G6CcM-zP07sFqJO5h2-NEPA4IwU49CQqMcYMmOG1gUhiICxFdgtLLQGDSxI7zAPveF99-rAMJi7-39zAQuxOawfqdUNwgGcD3SLrkimg0qOKr7IWBIeD5036W_bz6fLv-kt98v_66_nSTKy5kzI2hDBpZYSea2phU0kpi0wmqBRRN0RjQBphgla5UndBG1FAyLrGTHLqOn2XvD7ppLr8XDLEdbVA4JN_oltAWVSlr1hSySOi7_9A7t_gpuUtUxctECpmoDwdKeReCR9Om-Y_gty2j7S7S9pLdXuwjvU7w2yfJpRtRH9G_ASbgzQHwQR1v__0J_ggRA6p_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553454878</pqid></control><display><type>article</type><title>3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><creator>Peng, Ziyue ; Wang, Chengqiang ; Liu, Chun ; Xu, Haixia ; Wang, Yihan ; Liu, Yang ; Hu, Yunteng ; Li, Jianjun ; Jin, Yanglei ; Jiang, Cong ; Liu, Liangle ; Guo, Jiasong ; Zhu, Lixin</creator><creatorcontrib>Peng, Ziyue ; Wang, Chengqiang ; Liu, Chun ; Xu, Haixia ; Wang, Yihan ; Liu, Yang ; Hu, Yunteng ; Li, Jianjun ; Jin, Yanglei ; Jiang, Cong ; Liu, Liangle ; Guo, Jiasong ; Zhu, Lixin</creatorcontrib><description>Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO
2
) can release oxygen (O
2
), and magnesium ions (Mg
2+
), simultaneously, which is seen to have significant potential in bone substitutes. In this study, we used 3D printing technology to fabricate a MgO
2
-contained composite scaffold, which was composed of polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP) and magnesium peroxide (MgO
2
). Physical properties and O
2
/Mg
2+
releasing behavior of the scaffold were studied. Then, we evaluated the effects of the scaffold on cell survival, proliferation, migration, adhesion and osteogenic differentiation by the co-culture of bone marrow mesenchymal stem cells (BMSCs) and scaffold under normoxia and hypoxia
in vitro
. Finally, the osteogenic properties of the scaffold
in vivo
were evaluated
via
the rat femoral condylar bone defect model. The PCL/β-TCP/MgO
2
scaffold showed good mechanical properties and sustained O
2
and Mg
2+
release for about three weeks. Meanwhile, the scaffold showed appreciable promotion on the survival, proliferation, migration and osteogenic differentiation of BMSCs under hypoxia compared with control groups. The results of imaging studies and histological analysis showed that implantation of PCL/β-TCP/MgO
2
scaffold could promote seed cell survival and significantly increased new bone formation. In sum, the PCL/β-TCP/MgO
2
scaffold is promising with great potential for treating large bone defects.
Fabricate a MgO
2
-contained scaffold by 3D printing to improve ischemia and hypoxia in bone defect area.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d1tb00178g</identifier><identifier>PMID: 34223587</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone growth ; Bone marrow ; Bone Regeneration - drug effects ; Bone Substitutes - chemistry ; Bone Substitutes - pharmacology ; Calcium phosphates ; Calcium Phosphates - chemistry ; Calcium Phosphates - pharmacology ; Cell culture ; Cell migration ; Cell survival ; Cell Survival - drug effects ; Cells, Cultured ; Coculture Techniques ; Defects ; Differentiation (biology) ; Hypoxia ; Ischemia ; Magnesium ; Magnesium Compounds - chemistry ; Magnesium Compounds - pharmacology ; Male ; Mechanical properties ; Mesenchymal Stem Cell Transplantation ; Mesenchymal Stem Cells - cytology ; Mesenchyme ; Osteogenesis ; Osteogenesis - drug effects ; Oxygen ; Oxygen - metabolism ; Peroxide ; Peroxides - chemistry ; Peroxides - pharmacology ; Physical properties ; Polycaprolactone ; Polyesters - chemistry ; Polyesters - pharmacology ; Printing, Three-Dimensional ; Rats ; Rats, Sprague-Dawley ; Releasing ; Scaffolds ; Stem cell transplantation ; Stem cells ; Substitute bone ; Surgical implants ; Survival ; Three dimensional printing ; Tricalcium phosphate</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2021-07, Vol.9 (28), p.5698-571</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-ff01a985eb796ffa98058e9b70d7a2929fadfa1715d5c61a9976a4138eb83abb3</citedby><cites>FETCH-LOGICAL-c378t-ff01a985eb796ffa98058e9b70d7a2929fadfa1715d5c61a9976a4138eb83abb3</cites><orcidid>0000-0002-3394-2139 ; 0000-0003-3055-3063 ; 0000-0002-2392-7138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34223587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Hu, Yunteng</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Jin, Yanglei</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><creatorcontrib>Liu, Liangle</creatorcontrib><creatorcontrib>Guo, Jiasong</creatorcontrib><creatorcontrib>Zhu, Lixin</creatorcontrib><title>3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO
2
) can release oxygen (O
2
), and magnesium ions (Mg
2+
), simultaneously, which is seen to have significant potential in bone substitutes. In this study, we used 3D printing technology to fabricate a MgO
2
-contained composite scaffold, which was composed of polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP) and magnesium peroxide (MgO
2
). Physical properties and O
2
/Mg
2+
releasing behavior of the scaffold were studied. Then, we evaluated the effects of the scaffold on cell survival, proliferation, migration, adhesion and osteogenic differentiation by the co-culture of bone marrow mesenchymal stem cells (BMSCs) and scaffold under normoxia and hypoxia
in vitro
. Finally, the osteogenic properties of the scaffold
in vivo
were evaluated
via
the rat femoral condylar bone defect model. The PCL/β-TCP/MgO
2
scaffold showed good mechanical properties and sustained O
2
and Mg
2+
release for about three weeks. Meanwhile, the scaffold showed appreciable promotion on the survival, proliferation, migration and osteogenic differentiation of BMSCs under hypoxia compared with control groups. The results of imaging studies and histological analysis showed that implantation of PCL/β-TCP/MgO
2
scaffold could promote seed cell survival and significantly increased new bone formation. In sum, the PCL/β-TCP/MgO
2
scaffold is promising with great potential for treating large bone defects.
Fabricate a MgO
2
-contained scaffold by 3D printing to improve ischemia and hypoxia in bone defect area.</description><subject>Animals</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone Regeneration - drug effects</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - pharmacology</subject><subject>Calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Calcium Phosphates - pharmacology</subject><subject>Cell culture</subject><subject>Cell migration</subject><subject>Cell survival</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>Defects</subject><subject>Differentiation (biology)</subject><subject>Hypoxia</subject><subject>Ischemia</subject><subject>Magnesium</subject><subject>Magnesium Compounds - chemistry</subject><subject>Magnesium Compounds - pharmacology</subject><subject>Male</subject><subject>Mechanical properties</subject><subject>Mesenchymal Stem Cell Transplantation</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchyme</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Peroxide</subject><subject>Peroxides - chemistry</subject><subject>Peroxides - pharmacology</subject><subject>Physical properties</subject><subject>Polycaprolactone</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - pharmacology</subject><subject>Printing, Three-Dimensional</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Releasing</subject><subject>Scaffolds</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Substitute bone</subject><subject>Surgical implants</subject><subject>Survival</subject><subject>Three dimensional printing</subject><subject>Tricalcium phosphate</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkkFv1DAQhSMEolXphTvIEheEFNaOk9g50i0tSEUcKBK3aGKPs66SONhO1f1n_Lx6d8si4YtH9uc3T_OcZa8Z_cgob1aaxY5SJmT_LDstaEVzUTH5_FjTXyfZeQh3NC3JasnLl9kJL4uCV1KcZn_4JZm9nSJqMrthq2D2bgAV3YSrDiPk0VsFg7LLSOaNC_MGIq5G6CcM-zP07sFqJO5h2-NEPA4IwU49CQqMcYMmOG1gUhiICxFdgtLLQGDSxI7zAPveF99-rAMJi7-39zAQuxOawfqdUNwgGcD3SLrkimg0qOKr7IWBIeD5036W_bz6fLv-kt98v_66_nSTKy5kzI2hDBpZYSea2phU0kpi0wmqBRRN0RjQBphgla5UndBG1FAyLrGTHLqOn2XvD7ppLr8XDLEdbVA4JN_oltAWVSlr1hSySOi7_9A7t_gpuUtUxctECpmoDwdKeReCR9Om-Y_gty2j7S7S9pLdXuwjvU7w2yfJpRtRH9G_ASbgzQHwQR1v__0J_ggRA6p_</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Peng, Ziyue</creator><creator>Wang, Chengqiang</creator><creator>Liu, Chun</creator><creator>Xu, Haixia</creator><creator>Wang, Yihan</creator><creator>Liu, Yang</creator><creator>Hu, Yunteng</creator><creator>Li, Jianjun</creator><creator>Jin, Yanglei</creator><creator>Jiang, Cong</creator><creator>Liu, Liangle</creator><creator>Guo, Jiasong</creator><creator>Zhu, Lixin</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3394-2139</orcidid><orcidid>https://orcid.org/0000-0003-3055-3063</orcidid><orcidid>https://orcid.org/0000-0002-2392-7138</orcidid></search><sort><creationdate>20210721</creationdate><title>3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect</title><author>Peng, Ziyue ; Wang, Chengqiang ; Liu, Chun ; Xu, Haixia ; Wang, Yihan ; Liu, Yang ; Hu, Yunteng ; Li, Jianjun ; Jin, Yanglei ; Jiang, Cong ; Liu, Liangle ; Guo, Jiasong ; Zhu, Lixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-ff01a985eb796ffa98058e9b70d7a2929fadfa1715d5c61a9976a4138eb83abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone Regeneration - drug effects</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - pharmacology</topic><topic>Calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Calcium Phosphates - pharmacology</topic><topic>Cell culture</topic><topic>Cell migration</topic><topic>Cell survival</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>Defects</topic><topic>Differentiation (biology)</topic><topic>Hypoxia</topic><topic>Ischemia</topic><topic>Magnesium</topic><topic>Magnesium Compounds - chemistry</topic><topic>Magnesium Compounds - pharmacology</topic><topic>Male</topic><topic>Mechanical properties</topic><topic>Mesenchymal Stem Cell Transplantation</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchyme</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Peroxide</topic><topic>Peroxides - chemistry</topic><topic>Peroxides - pharmacology</topic><topic>Physical properties</topic><topic>Polycaprolactone</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - pharmacology</topic><topic>Printing, Three-Dimensional</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Releasing</topic><topic>Scaffolds</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Substitute bone</topic><topic>Surgical implants</topic><topic>Survival</topic><topic>Three dimensional printing</topic><topic>Tricalcium phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Hu, Yunteng</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Jin, Yanglei</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><creatorcontrib>Liu, Liangle</creatorcontrib><creatorcontrib>Guo, Jiasong</creatorcontrib><creatorcontrib>Zhu, Lixin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Ziyue</au><au>Wang, Chengqiang</au><au>Liu, Chun</au><au>Xu, Haixia</au><au>Wang, Yihan</au><au>Liu, Yang</au><au>Hu, Yunteng</au><au>Li, Jianjun</au><au>Jin, Yanglei</au><au>Jiang, Cong</au><au>Liu, Liangle</au><au>Guo, Jiasong</au><au>Zhu, Lixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2021-07-21</date><risdate>2021</risdate><volume>9</volume><issue>28</issue><spage>5698</spage><epage>571</epage><pages>5698-571</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO
2
) can release oxygen (O
2
), and magnesium ions (Mg
2+
), simultaneously, which is seen to have significant potential in bone substitutes. In this study, we used 3D printing technology to fabricate a MgO
2
-contained composite scaffold, which was composed of polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP) and magnesium peroxide (MgO
2
). Physical properties and O
2
/Mg
2+
releasing behavior of the scaffold were studied. Then, we evaluated the effects of the scaffold on cell survival, proliferation, migration, adhesion and osteogenic differentiation by the co-culture of bone marrow mesenchymal stem cells (BMSCs) and scaffold under normoxia and hypoxia
in vitro
. Finally, the osteogenic properties of the scaffold
in vivo
were evaluated
via
the rat femoral condylar bone defect model. The PCL/β-TCP/MgO
2
scaffold showed good mechanical properties and sustained O
2
and Mg
2+
release for about three weeks. Meanwhile, the scaffold showed appreciable promotion on the survival, proliferation, migration and osteogenic differentiation of BMSCs under hypoxia compared with control groups. The results of imaging studies and histological analysis showed that implantation of PCL/β-TCP/MgO
2
scaffold could promote seed cell survival and significantly increased new bone formation. In sum, the PCL/β-TCP/MgO
2
scaffold is promising with great potential for treating large bone defects.
Fabricate a MgO
2
-contained scaffold by 3D printing to improve ischemia and hypoxia in bone defect area.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34223587</pmid><doi>10.1039/d1tb00178g</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3394-2139</orcidid><orcidid>https://orcid.org/0000-0003-3055-3063</orcidid><orcidid>https://orcid.org/0000-0002-2392-7138</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2021-07, Vol.9 (28), p.5698-571 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1TB00178G |
source | MEDLINE; Royal Society Of Chemistry Journals |
subjects | Animals Biomaterials Biomedical materials Bone biomaterials Bone growth Bone marrow Bone Regeneration - drug effects Bone Substitutes - chemistry Bone Substitutes - pharmacology Calcium phosphates Calcium Phosphates - chemistry Calcium Phosphates - pharmacology Cell culture Cell migration Cell survival Cell Survival - drug effects Cells, Cultured Coculture Techniques Defects Differentiation (biology) Hypoxia Ischemia Magnesium Magnesium Compounds - chemistry Magnesium Compounds - pharmacology Male Mechanical properties Mesenchymal Stem Cell Transplantation Mesenchymal Stem Cells - cytology Mesenchyme Osteogenesis Osteogenesis - drug effects Oxygen Oxygen - metabolism Peroxide Peroxides - chemistry Peroxides - pharmacology Physical properties Polycaprolactone Polyesters - chemistry Polyesters - pharmacology Printing, Three-Dimensional Rats Rats, Sprague-Dawley Releasing Scaffolds Stem cell transplantation Stem cells Substitute bone Surgical implants Survival Three dimensional printing Tricalcium phosphate |
title | 3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%20polycaprolactone/beta-tricalcium%20phosphate/magnesium%20peroxide%20oxygen%20releasing%20scaffold%20enhances%20osteogenesis%20and%20implanted%20BMSCs%20survival%20in%20repairing%20the%20large%20bone%20defect&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Peng,%20Ziyue&rft.date=2021-07-21&rft.volume=9&rft.issue=28&rft.spage=5698&rft.epage=571&rft.pages=5698-571&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d1tb00178g&rft_dat=%3Cproquest_cross%3E2548619282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553454878&rft_id=info:pmid/34223587&rfr_iscdi=true |