3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect

Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO 2 ) can release oxygen (O 2 ), and magnesium ions (Mg 2+ ), simultaneously, which is s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2021-07, Vol.9 (28), p.5698-571
Hauptverfasser: Peng, Ziyue, Wang, Chengqiang, Liu, Chun, Xu, Haixia, Wang, Yihan, Liu, Yang, Hu, Yunteng, Li, Jianjun, Jin, Yanglei, Jiang, Cong, Liu, Liangle, Guo, Jiasong, Zhu, Lixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue 28
container_start_page 5698
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 9
creator Peng, Ziyue
Wang, Chengqiang
Liu, Chun
Xu, Haixia
Wang, Yihan
Liu, Yang
Hu, Yunteng
Li, Jianjun
Jin, Yanglei
Jiang, Cong
Liu, Liangle
Guo, Jiasong
Zhu, Lixin
description Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO 2 ) can release oxygen (O 2 ), and magnesium ions (Mg 2+ ), simultaneously, which is seen to have significant potential in bone substitutes. In this study, we used 3D printing technology to fabricate a MgO 2 -contained composite scaffold, which was composed of polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP) and magnesium peroxide (MgO 2 ). Physical properties and O 2 /Mg 2+ releasing behavior of the scaffold were studied. Then, we evaluated the effects of the scaffold on cell survival, proliferation, migration, adhesion and osteogenic differentiation by the co-culture of bone marrow mesenchymal stem cells (BMSCs) and scaffold under normoxia and hypoxia in vitro . Finally, the osteogenic properties of the scaffold in vivo were evaluated via the rat femoral condylar bone defect model. The PCL/β-TCP/MgO 2 scaffold showed good mechanical properties and sustained O 2 and Mg 2+ release for about three weeks. Meanwhile, the scaffold showed appreciable promotion on the survival, proliferation, migration and osteogenic differentiation of BMSCs under hypoxia compared with control groups. The results of imaging studies and histological analysis showed that implantation of PCL/β-TCP/MgO 2 scaffold could promote seed cell survival and significantly increased new bone formation. In sum, the PCL/β-TCP/MgO 2 scaffold is promising with great potential for treating large bone defects. Fabricate a MgO 2 -contained scaffold by 3D printing to improve ischemia and hypoxia in bone defect area.
doi_str_mv 10.1039/d1tb00178g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1TB00178G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548619282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-ff01a985eb796ffa98058e9b70d7a2929fadfa1715d5c61a9976a4138eb83abb3</originalsourceid><addsrcrecordid>eNpdkkFv1DAQhSMEolXphTvIEheEFNaOk9g50i0tSEUcKBK3aGKPs66SONhO1f1n_Lx6d8si4YtH9uc3T_OcZa8Z_cgob1aaxY5SJmT_LDstaEVzUTH5_FjTXyfZeQh3NC3JasnLl9kJL4uCV1KcZn_4JZm9nSJqMrthq2D2bgAV3YSrDiPk0VsFg7LLSOaNC_MGIq5G6CcM-zP07sFqJO5h2-NEPA4IwU49CQqMcYMmOG1gUhiICxFdgtLLQGDSxI7zAPveF99-rAMJi7-39zAQuxOawfqdUNwgGcD3SLrkimg0qOKr7IWBIeD5036W_bz6fLv-kt98v_66_nSTKy5kzI2hDBpZYSea2phU0kpi0wmqBRRN0RjQBphgla5UndBG1FAyLrGTHLqOn2XvD7ppLr8XDLEdbVA4JN_oltAWVSlr1hSySOi7_9A7t_gpuUtUxctECpmoDwdKeReCR9Om-Y_gty2j7S7S9pLdXuwjvU7w2yfJpRtRH9G_ASbgzQHwQR1v__0J_ggRA6p_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553454878</pqid></control><display><type>article</type><title>3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><creator>Peng, Ziyue ; Wang, Chengqiang ; Liu, Chun ; Xu, Haixia ; Wang, Yihan ; Liu, Yang ; Hu, Yunteng ; Li, Jianjun ; Jin, Yanglei ; Jiang, Cong ; Liu, Liangle ; Guo, Jiasong ; Zhu, Lixin</creator><creatorcontrib>Peng, Ziyue ; Wang, Chengqiang ; Liu, Chun ; Xu, Haixia ; Wang, Yihan ; Liu, Yang ; Hu, Yunteng ; Li, Jianjun ; Jin, Yanglei ; Jiang, Cong ; Liu, Liangle ; Guo, Jiasong ; Zhu, Lixin</creatorcontrib><description>Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO 2 ) can release oxygen (O 2 ), and magnesium ions (Mg 2+ ), simultaneously, which is seen to have significant potential in bone substitutes. In this study, we used 3D printing technology to fabricate a MgO 2 -contained composite scaffold, which was composed of polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP) and magnesium peroxide (MgO 2 ). Physical properties and O 2 /Mg 2+ releasing behavior of the scaffold were studied. Then, we evaluated the effects of the scaffold on cell survival, proliferation, migration, adhesion and osteogenic differentiation by the co-culture of bone marrow mesenchymal stem cells (BMSCs) and scaffold under normoxia and hypoxia in vitro . Finally, the osteogenic properties of the scaffold in vivo were evaluated via the rat femoral condylar bone defect model. The PCL/β-TCP/MgO 2 scaffold showed good mechanical properties and sustained O 2 and Mg 2+ release for about three weeks. Meanwhile, the scaffold showed appreciable promotion on the survival, proliferation, migration and osteogenic differentiation of BMSCs under hypoxia compared with control groups. The results of imaging studies and histological analysis showed that implantation of PCL/β-TCP/MgO 2 scaffold could promote seed cell survival and significantly increased new bone formation. In sum, the PCL/β-TCP/MgO 2 scaffold is promising with great potential for treating large bone defects. Fabricate a MgO 2 -contained scaffold by 3D printing to improve ischemia and hypoxia in bone defect area.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d1tb00178g</identifier><identifier>PMID: 34223587</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone growth ; Bone marrow ; Bone Regeneration - drug effects ; Bone Substitutes - chemistry ; Bone Substitutes - pharmacology ; Calcium phosphates ; Calcium Phosphates - chemistry ; Calcium Phosphates - pharmacology ; Cell culture ; Cell migration ; Cell survival ; Cell Survival - drug effects ; Cells, Cultured ; Coculture Techniques ; Defects ; Differentiation (biology) ; Hypoxia ; Ischemia ; Magnesium ; Magnesium Compounds - chemistry ; Magnesium Compounds - pharmacology ; Male ; Mechanical properties ; Mesenchymal Stem Cell Transplantation ; Mesenchymal Stem Cells - cytology ; Mesenchyme ; Osteogenesis ; Osteogenesis - drug effects ; Oxygen ; Oxygen - metabolism ; Peroxide ; Peroxides - chemistry ; Peroxides - pharmacology ; Physical properties ; Polycaprolactone ; Polyesters - chemistry ; Polyesters - pharmacology ; Printing, Three-Dimensional ; Rats ; Rats, Sprague-Dawley ; Releasing ; Scaffolds ; Stem cell transplantation ; Stem cells ; Substitute bone ; Surgical implants ; Survival ; Three dimensional printing ; Tricalcium phosphate</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2021-07, Vol.9 (28), p.5698-571</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-ff01a985eb796ffa98058e9b70d7a2929fadfa1715d5c61a9976a4138eb83abb3</citedby><cites>FETCH-LOGICAL-c378t-ff01a985eb796ffa98058e9b70d7a2929fadfa1715d5c61a9976a4138eb83abb3</cites><orcidid>0000-0002-3394-2139 ; 0000-0003-3055-3063 ; 0000-0002-2392-7138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34223587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Hu, Yunteng</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Jin, Yanglei</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><creatorcontrib>Liu, Liangle</creatorcontrib><creatorcontrib>Guo, Jiasong</creatorcontrib><creatorcontrib>Zhu, Lixin</creatorcontrib><title>3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO 2 ) can release oxygen (O 2 ), and magnesium ions (Mg 2+ ), simultaneously, which is seen to have significant potential in bone substitutes. In this study, we used 3D printing technology to fabricate a MgO 2 -contained composite scaffold, which was composed of polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP) and magnesium peroxide (MgO 2 ). Physical properties and O 2 /Mg 2+ releasing behavior of the scaffold were studied. Then, we evaluated the effects of the scaffold on cell survival, proliferation, migration, adhesion and osteogenic differentiation by the co-culture of bone marrow mesenchymal stem cells (BMSCs) and scaffold under normoxia and hypoxia in vitro . Finally, the osteogenic properties of the scaffold in vivo were evaluated via the rat femoral condylar bone defect model. The PCL/β-TCP/MgO 2 scaffold showed good mechanical properties and sustained O 2 and Mg 2+ release for about three weeks. Meanwhile, the scaffold showed appreciable promotion on the survival, proliferation, migration and osteogenic differentiation of BMSCs under hypoxia compared with control groups. The results of imaging studies and histological analysis showed that implantation of PCL/β-TCP/MgO 2 scaffold could promote seed cell survival and significantly increased new bone formation. In sum, the PCL/β-TCP/MgO 2 scaffold is promising with great potential for treating large bone defects. Fabricate a MgO 2 -contained scaffold by 3D printing to improve ischemia and hypoxia in bone defect area.</description><subject>Animals</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone growth</subject><subject>Bone marrow</subject><subject>Bone Regeneration - drug effects</subject><subject>Bone Substitutes - chemistry</subject><subject>Bone Substitutes - pharmacology</subject><subject>Calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Calcium Phosphates - pharmacology</subject><subject>Cell culture</subject><subject>Cell migration</subject><subject>Cell survival</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>Defects</subject><subject>Differentiation (biology)</subject><subject>Hypoxia</subject><subject>Ischemia</subject><subject>Magnesium</subject><subject>Magnesium Compounds - chemistry</subject><subject>Magnesium Compounds - pharmacology</subject><subject>Male</subject><subject>Mechanical properties</subject><subject>Mesenchymal Stem Cell Transplantation</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchyme</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Peroxide</subject><subject>Peroxides - chemistry</subject><subject>Peroxides - pharmacology</subject><subject>Physical properties</subject><subject>Polycaprolactone</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - pharmacology</subject><subject>Printing, Three-Dimensional</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Releasing</subject><subject>Scaffolds</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Substitute bone</subject><subject>Surgical implants</subject><subject>Survival</subject><subject>Three dimensional printing</subject><subject>Tricalcium phosphate</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkkFv1DAQhSMEolXphTvIEheEFNaOk9g50i0tSEUcKBK3aGKPs66SONhO1f1n_Lx6d8si4YtH9uc3T_OcZa8Z_cgob1aaxY5SJmT_LDstaEVzUTH5_FjTXyfZeQh3NC3JasnLl9kJL4uCV1KcZn_4JZm9nSJqMrthq2D2bgAV3YSrDiPk0VsFg7LLSOaNC_MGIq5G6CcM-zP07sFqJO5h2-NEPA4IwU49CQqMcYMmOG1gUhiICxFdgtLLQGDSxI7zAPveF99-rAMJi7-39zAQuxOawfqdUNwgGcD3SLrkimg0qOKr7IWBIeD5036W_bz6fLv-kt98v_66_nSTKy5kzI2hDBpZYSea2phU0kpi0wmqBRRN0RjQBphgla5UndBG1FAyLrGTHLqOn2XvD7ppLr8XDLEdbVA4JN_oltAWVSlr1hSySOi7_9A7t_gpuUtUxctECpmoDwdKeReCR9Om-Y_gty2j7S7S9pLdXuwjvU7w2yfJpRtRH9G_ASbgzQHwQR1v__0J_ggRA6p_</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Peng, Ziyue</creator><creator>Wang, Chengqiang</creator><creator>Liu, Chun</creator><creator>Xu, Haixia</creator><creator>Wang, Yihan</creator><creator>Liu, Yang</creator><creator>Hu, Yunteng</creator><creator>Li, Jianjun</creator><creator>Jin, Yanglei</creator><creator>Jiang, Cong</creator><creator>Liu, Liangle</creator><creator>Guo, Jiasong</creator><creator>Zhu, Lixin</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3394-2139</orcidid><orcidid>https://orcid.org/0000-0003-3055-3063</orcidid><orcidid>https://orcid.org/0000-0002-2392-7138</orcidid></search><sort><creationdate>20210721</creationdate><title>3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect</title><author>Peng, Ziyue ; Wang, Chengqiang ; Liu, Chun ; Xu, Haixia ; Wang, Yihan ; Liu, Yang ; Hu, Yunteng ; Li, Jianjun ; Jin, Yanglei ; Jiang, Cong ; Liu, Liangle ; Guo, Jiasong ; Zhu, Lixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-ff01a985eb796ffa98058e9b70d7a2929fadfa1715d5c61a9976a4138eb83abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone growth</topic><topic>Bone marrow</topic><topic>Bone Regeneration - drug effects</topic><topic>Bone Substitutes - chemistry</topic><topic>Bone Substitutes - pharmacology</topic><topic>Calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Calcium Phosphates - pharmacology</topic><topic>Cell culture</topic><topic>Cell migration</topic><topic>Cell survival</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>Defects</topic><topic>Differentiation (biology)</topic><topic>Hypoxia</topic><topic>Ischemia</topic><topic>Magnesium</topic><topic>Magnesium Compounds - chemistry</topic><topic>Magnesium Compounds - pharmacology</topic><topic>Male</topic><topic>Mechanical properties</topic><topic>Mesenchymal Stem Cell Transplantation</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchyme</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Peroxide</topic><topic>Peroxides - chemistry</topic><topic>Peroxides - pharmacology</topic><topic>Physical properties</topic><topic>Polycaprolactone</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - pharmacology</topic><topic>Printing, Three-Dimensional</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Releasing</topic><topic>Scaffolds</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Substitute bone</topic><topic>Surgical implants</topic><topic>Survival</topic><topic>Three dimensional printing</topic><topic>Tricalcium phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Hu, Yunteng</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Jin, Yanglei</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><creatorcontrib>Liu, Liangle</creatorcontrib><creatorcontrib>Guo, Jiasong</creatorcontrib><creatorcontrib>Zhu, Lixin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Ziyue</au><au>Wang, Chengqiang</au><au>Liu, Chun</au><au>Xu, Haixia</au><au>Wang, Yihan</au><au>Liu, Yang</au><au>Hu, Yunteng</au><au>Li, Jianjun</au><au>Jin, Yanglei</au><au>Jiang, Cong</au><au>Liu, Liangle</au><au>Guo, Jiasong</au><au>Zhu, Lixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2021-07-21</date><risdate>2021</risdate><volume>9</volume><issue>28</issue><spage>5698</spage><epage>571</epage><pages>5698-571</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO 2 ) can release oxygen (O 2 ), and magnesium ions (Mg 2+ ), simultaneously, which is seen to have significant potential in bone substitutes. In this study, we used 3D printing technology to fabricate a MgO 2 -contained composite scaffold, which was composed of polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP) and magnesium peroxide (MgO 2 ). Physical properties and O 2 /Mg 2+ releasing behavior of the scaffold were studied. Then, we evaluated the effects of the scaffold on cell survival, proliferation, migration, adhesion and osteogenic differentiation by the co-culture of bone marrow mesenchymal stem cells (BMSCs) and scaffold under normoxia and hypoxia in vitro . Finally, the osteogenic properties of the scaffold in vivo were evaluated via the rat femoral condylar bone defect model. The PCL/β-TCP/MgO 2 scaffold showed good mechanical properties and sustained O 2 and Mg 2+ release for about three weeks. Meanwhile, the scaffold showed appreciable promotion on the survival, proliferation, migration and osteogenic differentiation of BMSCs under hypoxia compared with control groups. The results of imaging studies and histological analysis showed that implantation of PCL/β-TCP/MgO 2 scaffold could promote seed cell survival and significantly increased new bone formation. In sum, the PCL/β-TCP/MgO 2 scaffold is promising with great potential for treating large bone defects. Fabricate a MgO 2 -contained scaffold by 3D printing to improve ischemia and hypoxia in bone defect area.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>34223587</pmid><doi>10.1039/d1tb00178g</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3394-2139</orcidid><orcidid>https://orcid.org/0000-0003-3055-3063</orcidid><orcidid>https://orcid.org/0000-0002-2392-7138</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2021-07, Vol.9 (28), p.5698-571
issn 2050-750X
2050-7518
language eng
recordid cdi_crossref_primary_10_1039_D1TB00178G
source MEDLINE; Royal Society Of Chemistry Journals
subjects Animals
Biomaterials
Biomedical materials
Bone biomaterials
Bone growth
Bone marrow
Bone Regeneration - drug effects
Bone Substitutes - chemistry
Bone Substitutes - pharmacology
Calcium phosphates
Calcium Phosphates - chemistry
Calcium Phosphates - pharmacology
Cell culture
Cell migration
Cell survival
Cell Survival - drug effects
Cells, Cultured
Coculture Techniques
Defects
Differentiation (biology)
Hypoxia
Ischemia
Magnesium
Magnesium Compounds - chemistry
Magnesium Compounds - pharmacology
Male
Mechanical properties
Mesenchymal Stem Cell Transplantation
Mesenchymal Stem Cells - cytology
Mesenchyme
Osteogenesis
Osteogenesis - drug effects
Oxygen
Oxygen - metabolism
Peroxide
Peroxides - chemistry
Peroxides - pharmacology
Physical properties
Polycaprolactone
Polyesters - chemistry
Polyesters - pharmacology
Printing, Three-Dimensional
Rats
Rats, Sprague-Dawley
Releasing
Scaffolds
Stem cell transplantation
Stem cells
Substitute bone
Surgical implants
Survival
Three dimensional printing
Tricalcium phosphate
title 3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%20polycaprolactone/beta-tricalcium%20phosphate/magnesium%20peroxide%20oxygen%20releasing%20scaffold%20enhances%20osteogenesis%20and%20implanted%20BMSCs%20survival%20in%20repairing%20the%20large%20bone%20defect&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Peng,%20Ziyue&rft.date=2021-07-21&rft.volume=9&rft.issue=28&rft.spage=5698&rft.epage=571&rft.pages=5698-571&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d1tb00178g&rft_dat=%3Cproquest_cross%3E2548619282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553454878&rft_id=info:pmid/34223587&rfr_iscdi=true