Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide
The electrochemical conversion of CO 2 into valuable chemicals would be an effective way to realize the carbon-neutral energy cycle and alleviate the energy crisis. Due to their porous crystalline structures and ordered single active sites, covalent organic frameworks (COFs) are one class of promisi...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-03, Vol.1 (9), p.4653-4659 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4659 |
---|---|
container_issue | 9 |
container_start_page | 4653 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 1 |
creator | Chi, Shao-Yi Chen, Qian Zhao, Shao-Shuai Si, Duan-Hui Wu, Qiu-Jin Huang, Yuan-Biao Cao, Rong |
description | The electrochemical conversion of CO
2
into valuable chemicals would be an effective way to realize the carbon-neutral energy cycle and alleviate the energy crisis. Due to their porous crystalline structures and ordered single active sites, covalent organic frameworks (COFs) are one class of promising candidates for the carbon dioxide reduction reaction (CO
2
RR). However, the active sites are usually hidden in the layers of the two-dimensional (2D) COF materials and cannot be accessible for electrolytes and CO
2
, thus leading to low activity. In order to increase the available active sites and enhance the current density, herein, a porous three-dimensional (3D) cobalt porphyrinic COF, denoted as 3D-Por(Co/H)-COF, was synthesized
via
a solvothermal Schiff-base condensation reaction of tetra(4-formylphenyl)methane (TFPM) and a mixture of 5,10,15,20-tetrakis(4-aminophenyl)porphinatocobalt (Co-TAPP) and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP). The 3D-Por(Co/H)-COF exhibited high activity for the CO
2
RR with a CO faradaic efficiency of 92.4% at −0.6 V
versus
the reversible hydrogen electrode (RHE), a turnover frequency (TOF) for CO production of 4610 h
−1
at an applied potential of −1.1 V, which exceeded those of all reported Co porphyrin-based two-dimensional COFs. The porous 3D framework could maximize active electrocatalytic sites by reducing the aggregation of molecular building blocks, which provides a new way to improve the electrocatalytic activity by changing the dimensions of the catalyst.
A 3D cobalt porphyrin-based covalent organic framework, 3D-Por(Co/H)-COF, was prepared to maximize the accessibility of the active sites for enhanced activity for the electrochemical CO
2
reduction reaction. |
doi_str_mv | 10.1039/d1ta10991j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1TA10991J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634865022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-afd18e4ed0b1e0f96c4a30ff56816766ac0c8876b457103d4e773d9776b3e5613</originalsourceid><addsrcrecordid>eNpFkM1LAzEUxIMoWGov3oUFb8Jqsh_Z5FjqNwUv9bykyUs3dbtpX7Zq_3tTK_Vd3jD8GJgh5JLRW0ZzeWdYrxiVki1PyCCjJU2rQvLToxbinIxCWNJ4glIu5YBsZg0CpMatoAvOd6pN1h7XzQ5d53Si_adqoesTjwu1NyyqFXx5_AiJ9Zg0btG0uwSsddrtOWhB9-gRzFb3MS_xNtEK51EZ57-dgQtyZlUbYPT3h-T98WE2eU6nb08vk_E01ZlgfaqsYQIKMHTOgFrJdaFyam3JBeMV50pTLUTF50VZxfamgKrKjayik0PJWT4k14fcNfrNFkJfL_0WY8FQZzwvBC9plkXq5kBp9CEg2HqNbqVwVzNa71et79ls_Lvqa4SvDjAGfeT-V89_ACPDdgo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634865022</pqid></control><display><type>article</type><title>Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chi, Shao-Yi ; Chen, Qian ; Zhao, Shao-Shuai ; Si, Duan-Hui ; Wu, Qiu-Jin ; Huang, Yuan-Biao ; Cao, Rong</creator><creatorcontrib>Chi, Shao-Yi ; Chen, Qian ; Zhao, Shao-Shuai ; Si, Duan-Hui ; Wu, Qiu-Jin ; Huang, Yuan-Biao ; Cao, Rong</creatorcontrib><description>The electrochemical conversion of CO
2
into valuable chemicals would be an effective way to realize the carbon-neutral energy cycle and alleviate the energy crisis. Due to their porous crystalline structures and ordered single active sites, covalent organic frameworks (COFs) are one class of promising candidates for the carbon dioxide reduction reaction (CO
2
RR). However, the active sites are usually hidden in the layers of the two-dimensional (2D) COF materials and cannot be accessible for electrolytes and CO
2
, thus leading to low activity. In order to increase the available active sites and enhance the current density, herein, a porous three-dimensional (3D) cobalt porphyrinic COF, denoted as 3D-Por(Co/H)-COF, was synthesized
via
a solvothermal Schiff-base condensation reaction of tetra(4-formylphenyl)methane (TFPM) and a mixture of 5,10,15,20-tetrakis(4-aminophenyl)porphinatocobalt (Co-TAPP) and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP). The 3D-Por(Co/H)-COF exhibited high activity for the CO
2
RR with a CO faradaic efficiency of 92.4% at −0.6 V
versus
the reversible hydrogen electrode (RHE), a turnover frequency (TOF) for CO production of 4610 h
−1
at an applied potential of −1.1 V, which exceeded those of all reported Co porphyrin-based two-dimensional COFs. The porous 3D framework could maximize active electrocatalytic sites by reducing the aggregation of molecular building blocks, which provides a new way to improve the electrocatalytic activity by changing the dimensions of the catalyst.
A 3D cobalt porphyrin-based covalent organic framework, 3D-Por(Co/H)-COF, was prepared to maximize the accessibility of the active sites for enhanced activity for the electrochemical CO
2
reduction reaction.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta10991j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon cycle ; Carbon dioxide ; Catalysts ; Chemical reduction ; Cobalt ; Condensates ; Electrochemistry ; Electrolytes ; Imines ; Porphyrins</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-03, Vol.1 (9), p.4653-4659</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-afd18e4ed0b1e0f96c4a30ff56816766ac0c8876b457103d4e773d9776b3e5613</citedby><cites>FETCH-LOGICAL-c281t-afd18e4ed0b1e0f96c4a30ff56816766ac0c8876b457103d4e773d9776b3e5613</cites><orcidid>0000-0002-2398-399X ; 0000-0003-4680-2976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chi, Shao-Yi</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Zhao, Shao-Shuai</creatorcontrib><creatorcontrib>Si, Duan-Hui</creatorcontrib><creatorcontrib>Wu, Qiu-Jin</creatorcontrib><creatorcontrib>Huang, Yuan-Biao</creatorcontrib><creatorcontrib>Cao, Rong</creatorcontrib><title>Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The electrochemical conversion of CO
2
into valuable chemicals would be an effective way to realize the carbon-neutral energy cycle and alleviate the energy crisis. Due to their porous crystalline structures and ordered single active sites, covalent organic frameworks (COFs) are one class of promising candidates for the carbon dioxide reduction reaction (CO
2
RR). However, the active sites are usually hidden in the layers of the two-dimensional (2D) COF materials and cannot be accessible for electrolytes and CO
2
, thus leading to low activity. In order to increase the available active sites and enhance the current density, herein, a porous three-dimensional (3D) cobalt porphyrinic COF, denoted as 3D-Por(Co/H)-COF, was synthesized
via
a solvothermal Schiff-base condensation reaction of tetra(4-formylphenyl)methane (TFPM) and a mixture of 5,10,15,20-tetrakis(4-aminophenyl)porphinatocobalt (Co-TAPP) and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP). The 3D-Por(Co/H)-COF exhibited high activity for the CO
2
RR with a CO faradaic efficiency of 92.4% at −0.6 V
versus
the reversible hydrogen electrode (RHE), a turnover frequency (TOF) for CO production of 4610 h
−1
at an applied potential of −1.1 V, which exceeded those of all reported Co porphyrin-based two-dimensional COFs. The porous 3D framework could maximize active electrocatalytic sites by reducing the aggregation of molecular building blocks, which provides a new way to improve the electrocatalytic activity by changing the dimensions of the catalyst.
A 3D cobalt porphyrin-based covalent organic framework, 3D-Por(Co/H)-COF, was prepared to maximize the accessibility of the active sites for enhanced activity for the electrochemical CO
2
reduction reaction.</description><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Cobalt</subject><subject>Condensates</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Imines</subject><subject>Porphyrins</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEUxIMoWGov3oUFb8Jqsh_Z5FjqNwUv9bykyUs3dbtpX7Zq_3tTK_Vd3jD8GJgh5JLRW0ZzeWdYrxiVki1PyCCjJU2rQvLToxbinIxCWNJ4glIu5YBsZg0CpMatoAvOd6pN1h7XzQ5d53Si_adqoesTjwu1NyyqFXx5_AiJ9Zg0btG0uwSsddrtOWhB9-gRzFb3MS_xNtEK51EZ57-dgQtyZlUbYPT3h-T98WE2eU6nb08vk_E01ZlgfaqsYQIKMHTOgFrJdaFyam3JBeMV50pTLUTF50VZxfamgKrKjayik0PJWT4k14fcNfrNFkJfL_0WY8FQZzwvBC9plkXq5kBp9CEg2HqNbqVwVzNa71et79ls_Lvqa4SvDjAGfeT-V89_ACPDdgo</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Chi, Shao-Yi</creator><creator>Chen, Qian</creator><creator>Zhao, Shao-Shuai</creator><creator>Si, Duan-Hui</creator><creator>Wu, Qiu-Jin</creator><creator>Huang, Yuan-Biao</creator><creator>Cao, Rong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2398-399X</orcidid><orcidid>https://orcid.org/0000-0003-4680-2976</orcidid></search><sort><creationdate>20220301</creationdate><title>Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide</title><author>Chi, Shao-Yi ; Chen, Qian ; Zhao, Shao-Shuai ; Si, Duan-Hui ; Wu, Qiu-Jin ; Huang, Yuan-Biao ; Cao, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-afd18e4ed0b1e0f96c4a30ff56816766ac0c8876b457103d4e773d9776b3e5613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Cobalt</topic><topic>Condensates</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Imines</topic><topic>Porphyrins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chi, Shao-Yi</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Zhao, Shao-Shuai</creatorcontrib><creatorcontrib>Si, Duan-Hui</creatorcontrib><creatorcontrib>Wu, Qiu-Jin</creatorcontrib><creatorcontrib>Huang, Yuan-Biao</creatorcontrib><creatorcontrib>Cao, Rong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chi, Shao-Yi</au><au>Chen, Qian</au><au>Zhao, Shao-Shuai</au><au>Si, Duan-Hui</au><au>Wu, Qiu-Jin</au><au>Huang, Yuan-Biao</au><au>Cao, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>1</volume><issue>9</issue><spage>4653</spage><epage>4659</epage><pages>4653-4659</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The electrochemical conversion of CO
2
into valuable chemicals would be an effective way to realize the carbon-neutral energy cycle and alleviate the energy crisis. Due to their porous crystalline structures and ordered single active sites, covalent organic frameworks (COFs) are one class of promising candidates for the carbon dioxide reduction reaction (CO
2
RR). However, the active sites are usually hidden in the layers of the two-dimensional (2D) COF materials and cannot be accessible for electrolytes and CO
2
, thus leading to low activity. In order to increase the available active sites and enhance the current density, herein, a porous three-dimensional (3D) cobalt porphyrinic COF, denoted as 3D-Por(Co/H)-COF, was synthesized
via
a solvothermal Schiff-base condensation reaction of tetra(4-formylphenyl)methane (TFPM) and a mixture of 5,10,15,20-tetrakis(4-aminophenyl)porphinatocobalt (Co-TAPP) and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP). The 3D-Por(Co/H)-COF exhibited high activity for the CO
2
RR with a CO faradaic efficiency of 92.4% at −0.6 V
versus
the reversible hydrogen electrode (RHE), a turnover frequency (TOF) for CO production of 4610 h
−1
at an applied potential of −1.1 V, which exceeded those of all reported Co porphyrin-based two-dimensional COFs. The porous 3D framework could maximize active electrocatalytic sites by reducing the aggregation of molecular building blocks, which provides a new way to improve the electrocatalytic activity by changing the dimensions of the catalyst.
A 3D cobalt porphyrin-based covalent organic framework, 3D-Por(Co/H)-COF, was prepared to maximize the accessibility of the active sites for enhanced activity for the electrochemical CO
2
reduction reaction.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta10991j</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2398-399X</orcidid><orcidid>https://orcid.org/0000-0003-4680-2976</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-03, Vol.1 (9), p.4653-4659 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1TA10991J |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carbon cycle Carbon dioxide Catalysts Chemical reduction Cobalt Condensates Electrochemistry Electrolytes Imines Porphyrins |
title | Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20porphyrinic%20covalent%20organic%20frameworks%20for%20highly%20efficient%20electroreduction%20of%20carbon%20dioxide&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chi,%20Shao-Yi&rft.date=2022-03-01&rft.volume=1&rft.issue=9&rft.spage=4653&rft.epage=4659&rft.pages=4653-4659&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta10991j&rft_dat=%3Cproquest_cross%3E2634865022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634865022&rft_id=info:pmid/&rfr_iscdi=true |