Highly exposed discrete Co atoms anchored in ultrathin porous N, P-codoped carbon nanosheets for efficient oxygen electrocatalysis and rechargeable aqueous/solid-state Zn-air batteries

Single atom catalysts (SACs) exhibit desirable catalytic properties in key renewable energy reactions and devices. However, rational design of SACs and boosting their performances for oxygen electrocatalysis and rechargeable Zn-air batteries (ZABs) are still crucial yet challenging. Herein, single C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22643-22652
Hauptverfasser: Liu, Xinghuan, Zhang, Yanwen, Zhao, Zeyu, Gao, Haoran, Kang, Junjie, Wang, Rongjie, Ge, Guixian, Jia, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22652
container_issue 39
container_start_page 22643
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Liu, Xinghuan
Zhang, Yanwen
Zhao, Zeyu
Gao, Haoran
Kang, Junjie
Wang, Rongjie
Ge, Guixian
Jia, Xin
description Single atom catalysts (SACs) exhibit desirable catalytic properties in key renewable energy reactions and devices. However, rational design of SACs and boosting their performances for oxygen electrocatalysis and rechargeable Zn-air batteries (ZABs) are still crucial yet challenging. Herein, single Co atoms anchored in ultrathin N, P-codoped porous carbon nanosheets (Co SA /NPC) were prepared by an in situ confinement pyrolysis strategy. The ultrathin nanosheet structure provides an ideal platform for high exposure of the generated Co active sites and extremely shortens the electron transport pathways. Both experimental and theoretical results demonstrate that the N/P coordinated Co sites enable optimized charge distribution and facilitate oxygen intermediate adsorption/desorption. Such a Co SA /NPC catalyst exhibits high oxygen reduction reaction (ORR) activity with a half-wave potential ( E 1/2 ) of 0.87 V and oxygen evolution reaction (OER) activity with a low potential of 1.67 V at 10 mA cm −2 . As an air electrode in ZABs, it demonstrates a high peak power density of 204.3 mW cm −2 and excellent long-term stability in aqueous ZABs. It also reveals superior flexibility and stability in solid-state ZABs. Thus, Co SA /NPC is a promising bifunctional electrocatalyst for practical applications in aqueous and flexible solid-state ZABs. The ultrathin porous nanosheet structure and optimized N and P dual-coordinated Co active sites enable high performances of Co SA /NPC in oxygen electrocatalysis and rechargeable aqueous and flexible solid-state ZABs.
doi_str_mv 10.1039/d1ta07404k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1TA07404K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580981197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-7689a0966ec98f963a31b1a860dcceab442ec9f17e6a0af4b1ee3638b01369af3</originalsourceid><addsrcrecordid>eNpFkUFr3DAQhU1poSHJpfeAoLdSN9LakaVj2KZNaEh7SC-5mLE8Wit1JHdGC9l_1p9XpVuSucyD-Xhv4FXVOyU_KdnY01FlkF0r21-vqoOVPJN111r9-lkb87Y6Zr6XZYyU2tqD6s9l2EzzTuDjkhhHMQZ2hBnFOgnI6YEFRDclKqcQxXbOBHkqakmUtixuPooftUtjWgrggIYURYSYeELMLHwigd4HFzBmkR53G4wCZ3SZkoMM847DU8IoCN0EtEEYZhTwe4vF_ZTTHMaaM5R_7mINgcQAOSMF5KPqjYeZ8fj_Pqx-frm4XV_W19-_Xq3Pr2u3MirXnTYWpNUanTXe6gYaNSgwWo7OlbS2XZWLVx1qkODbQSE2ujGDVI224JvD6v3ed6FU3uLc36ctxRLZr86MtEYp2xXqw55ylJgJfb9QeADa9Ur2T-X0n9Xt-b9yvhX4ZA8Tu2fupbzmL_5mkHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580981197</pqid></control><display><type>article</type><title>Highly exposed discrete Co atoms anchored in ultrathin porous N, P-codoped carbon nanosheets for efficient oxygen electrocatalysis and rechargeable aqueous/solid-state Zn-air batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Xinghuan ; Zhang, Yanwen ; Zhao, Zeyu ; Gao, Haoran ; Kang, Junjie ; Wang, Rongjie ; Ge, Guixian ; Jia, Xin</creator><creatorcontrib>Liu, Xinghuan ; Zhang, Yanwen ; Zhao, Zeyu ; Gao, Haoran ; Kang, Junjie ; Wang, Rongjie ; Ge, Guixian ; Jia, Xin</creatorcontrib><description>Single atom catalysts (SACs) exhibit desirable catalytic properties in key renewable energy reactions and devices. However, rational design of SACs and boosting their performances for oxygen electrocatalysis and rechargeable Zn-air batteries (ZABs) are still crucial yet challenging. Herein, single Co atoms anchored in ultrathin N, P-codoped porous carbon nanosheets (Co SA /NPC) were prepared by an in situ confinement pyrolysis strategy. The ultrathin nanosheet structure provides an ideal platform for high exposure of the generated Co active sites and extremely shortens the electron transport pathways. Both experimental and theoretical results demonstrate that the N/P coordinated Co sites enable optimized charge distribution and facilitate oxygen intermediate adsorption/desorption. Such a Co SA /NPC catalyst exhibits high oxygen reduction reaction (ORR) activity with a half-wave potential ( E 1/2 ) of 0.87 V and oxygen evolution reaction (OER) activity with a low potential of 1.67 V at 10 mA cm −2 . As an air electrode in ZABs, it demonstrates a high peak power density of 204.3 mW cm −2 and excellent long-term stability in aqueous ZABs. It also reveals superior flexibility and stability in solid-state ZABs. Thus, Co SA /NPC is a promising bifunctional electrocatalyst for practical applications in aqueous and flexible solid-state ZABs. The ultrathin porous nanosheet structure and optimized N and P dual-coordinated Co active sites enable high performances of Co SA /NPC in oxygen electrocatalysis and rechargeable aqueous and flexible solid-state ZABs.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta07404k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic properties ; Batteries ; Carbon ; Catalysis ; Catalysts ; Charge distribution ; Chemical reduction ; Electrocatalysis ; Electrocatalysts ; Electron transport ; Metal air batteries ; Nanosheets ; Oxygen ; Oxygen evolution reactions ; Oxygen reduction reactions ; Pyrolysis ; Rechargeable batteries ; Renewable energy ; Single atom catalysts ; Solid state ; Stability ; Zinc ; Zinc-oxygen batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22643-22652</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-7689a0966ec98f963a31b1a860dcceab442ec9f17e6a0af4b1ee3638b01369af3</citedby><cites>FETCH-LOGICAL-c281t-7689a0966ec98f963a31b1a860dcceab442ec9f17e6a0af4b1ee3638b01369af3</cites><orcidid>0000-0002-4114-8680 ; 0000-0003-1193-2025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Liu, Xinghuan</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Zhao, Zeyu</creatorcontrib><creatorcontrib>Gao, Haoran</creatorcontrib><creatorcontrib>Kang, Junjie</creatorcontrib><creatorcontrib>Wang, Rongjie</creatorcontrib><creatorcontrib>Ge, Guixian</creatorcontrib><creatorcontrib>Jia, Xin</creatorcontrib><title>Highly exposed discrete Co atoms anchored in ultrathin porous N, P-codoped carbon nanosheets for efficient oxygen electrocatalysis and rechargeable aqueous/solid-state Zn-air batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Single atom catalysts (SACs) exhibit desirable catalytic properties in key renewable energy reactions and devices. However, rational design of SACs and boosting their performances for oxygen electrocatalysis and rechargeable Zn-air batteries (ZABs) are still crucial yet challenging. Herein, single Co atoms anchored in ultrathin N, P-codoped porous carbon nanosheets (Co SA /NPC) were prepared by an in situ confinement pyrolysis strategy. The ultrathin nanosheet structure provides an ideal platform for high exposure of the generated Co active sites and extremely shortens the electron transport pathways. Both experimental and theoretical results demonstrate that the N/P coordinated Co sites enable optimized charge distribution and facilitate oxygen intermediate adsorption/desorption. Such a Co SA /NPC catalyst exhibits high oxygen reduction reaction (ORR) activity with a half-wave potential ( E 1/2 ) of 0.87 V and oxygen evolution reaction (OER) activity with a low potential of 1.67 V at 10 mA cm −2 . As an air electrode in ZABs, it demonstrates a high peak power density of 204.3 mW cm −2 and excellent long-term stability in aqueous ZABs. It also reveals superior flexibility and stability in solid-state ZABs. Thus, Co SA /NPC is a promising bifunctional electrocatalyst for practical applications in aqueous and flexible solid-state ZABs. The ultrathin porous nanosheet structure and optimized N and P dual-coordinated Co active sites enable high performances of Co SA /NPC in oxygen electrocatalysis and rechargeable aqueous and flexible solid-state ZABs.</description><subject>Atomic properties</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge distribution</subject><subject>Chemical reduction</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electron transport</subject><subject>Metal air batteries</subject><subject>Nanosheets</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Pyrolysis</subject><subject>Rechargeable batteries</subject><subject>Renewable energy</subject><subject>Single atom catalysts</subject><subject>Solid state</subject><subject>Stability</subject><subject>Zinc</subject><subject>Zinc-oxygen batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkUFr3DAQhU1poSHJpfeAoLdSN9LakaVj2KZNaEh7SC-5mLE8Wit1JHdGC9l_1p9XpVuSucyD-Xhv4FXVOyU_KdnY01FlkF0r21-vqoOVPJN111r9-lkb87Y6Zr6XZYyU2tqD6s9l2EzzTuDjkhhHMQZ2hBnFOgnI6YEFRDclKqcQxXbOBHkqakmUtixuPooftUtjWgrggIYURYSYeELMLHwigd4HFzBmkR53G4wCZ3SZkoMM847DU8IoCN0EtEEYZhTwe4vF_ZTTHMaaM5R_7mINgcQAOSMF5KPqjYeZ8fj_Pqx-frm4XV_W19-_Xq3Pr2u3MirXnTYWpNUanTXe6gYaNSgwWo7OlbS2XZWLVx1qkODbQSE2ujGDVI224JvD6v3ed6FU3uLc36ctxRLZr86MtEYp2xXqw55ylJgJfb9QeADa9Ur2T-X0n9Xt-b9yvhX4ZA8Tu2fupbzmL_5mkHk</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Liu, Xinghuan</creator><creator>Zhang, Yanwen</creator><creator>Zhao, Zeyu</creator><creator>Gao, Haoran</creator><creator>Kang, Junjie</creator><creator>Wang, Rongjie</creator><creator>Ge, Guixian</creator><creator>Jia, Xin</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4114-8680</orcidid><orcidid>https://orcid.org/0000-0003-1193-2025</orcidid></search><sort><creationdate>20211012</creationdate><title>Highly exposed discrete Co atoms anchored in ultrathin porous N, P-codoped carbon nanosheets for efficient oxygen electrocatalysis and rechargeable aqueous/solid-state Zn-air batteries</title><author>Liu, Xinghuan ; Zhang, Yanwen ; Zhao, Zeyu ; Gao, Haoran ; Kang, Junjie ; Wang, Rongjie ; Ge, Guixian ; Jia, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-7689a0966ec98f963a31b1a860dcceab442ec9f17e6a0af4b1ee3638b01369af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic properties</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge distribution</topic><topic>Chemical reduction</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electron transport</topic><topic>Metal air batteries</topic><topic>Nanosheets</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Pyrolysis</topic><topic>Rechargeable batteries</topic><topic>Renewable energy</topic><topic>Single atom catalysts</topic><topic>Solid state</topic><topic>Stability</topic><topic>Zinc</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xinghuan</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Zhao, Zeyu</creatorcontrib><creatorcontrib>Gao, Haoran</creatorcontrib><creatorcontrib>Kang, Junjie</creatorcontrib><creatorcontrib>Wang, Rongjie</creatorcontrib><creatorcontrib>Ge, Guixian</creatorcontrib><creatorcontrib>Jia, Xin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xinghuan</au><au>Zhang, Yanwen</au><au>Zhao, Zeyu</au><au>Gao, Haoran</au><au>Kang, Junjie</au><au>Wang, Rongjie</au><au>Ge, Guixian</au><au>Jia, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly exposed discrete Co atoms anchored in ultrathin porous N, P-codoped carbon nanosheets for efficient oxygen electrocatalysis and rechargeable aqueous/solid-state Zn-air batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-10-12</date><risdate>2021</risdate><volume>9</volume><issue>39</issue><spage>22643</spage><epage>22652</epage><pages>22643-22652</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Single atom catalysts (SACs) exhibit desirable catalytic properties in key renewable energy reactions and devices. However, rational design of SACs and boosting their performances for oxygen electrocatalysis and rechargeable Zn-air batteries (ZABs) are still crucial yet challenging. Herein, single Co atoms anchored in ultrathin N, P-codoped porous carbon nanosheets (Co SA /NPC) were prepared by an in situ confinement pyrolysis strategy. The ultrathin nanosheet structure provides an ideal platform for high exposure of the generated Co active sites and extremely shortens the electron transport pathways. Both experimental and theoretical results demonstrate that the N/P coordinated Co sites enable optimized charge distribution and facilitate oxygen intermediate adsorption/desorption. Such a Co SA /NPC catalyst exhibits high oxygen reduction reaction (ORR) activity with a half-wave potential ( E 1/2 ) of 0.87 V and oxygen evolution reaction (OER) activity with a low potential of 1.67 V at 10 mA cm −2 . As an air electrode in ZABs, it demonstrates a high peak power density of 204.3 mW cm −2 and excellent long-term stability in aqueous ZABs. It also reveals superior flexibility and stability in solid-state ZABs. Thus, Co SA /NPC is a promising bifunctional electrocatalyst for practical applications in aqueous and flexible solid-state ZABs. The ultrathin porous nanosheet structure and optimized N and P dual-coordinated Co active sites enable high performances of Co SA /NPC in oxygen electrocatalysis and rechargeable aqueous and flexible solid-state ZABs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta07404k</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4114-8680</orcidid><orcidid>https://orcid.org/0000-0003-1193-2025</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22643-22652
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D1TA07404K
source Royal Society Of Chemistry Journals 2008-
subjects Atomic properties
Batteries
Carbon
Catalysis
Catalysts
Charge distribution
Chemical reduction
Electrocatalysis
Electrocatalysts
Electron transport
Metal air batteries
Nanosheets
Oxygen
Oxygen evolution reactions
Oxygen reduction reactions
Pyrolysis
Rechargeable batteries
Renewable energy
Single atom catalysts
Solid state
Stability
Zinc
Zinc-oxygen batteries
title Highly exposed discrete Co atoms anchored in ultrathin porous N, P-codoped carbon nanosheets for efficient oxygen electrocatalysis and rechargeable aqueous/solid-state Zn-air batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20exposed%20discrete%20Co%20atoms%20anchored%20in%20ultrathin%20porous%20N,%20P-codoped%20carbon%20nanosheets%20for%20efficient%20oxygen%20electrocatalysis%20and%20rechargeable%20aqueous/solid-state%20Zn-air%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Liu,%20Xinghuan&rft.date=2021-10-12&rft.volume=9&rft.issue=39&rft.spage=22643&rft.epage=22652&rft.pages=22643-22652&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta07404k&rft_dat=%3Cproquest_cross%3E2580981197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580981197&rft_id=info:pmid/&rfr_iscdi=true