MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability
Solar-driven desalination, which involves the conversion of solar energy to heat for freshwater generation, has been recognized as an attractive and sustainable desalination technology to alleviate freshwater shortage. In particular, photothermally driven membrane distillation (PMD) is a highly prom...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22585-22596 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22596 |
---|---|
container_issue | 39 |
container_start_page | 22585 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Cao, Sisi Wu, Xuanhao Zhu, Yaguang Gupta, Prashant Martinez, Adrian Zhang, Yunzhu Ghim, Deoukchen Wang, Yixuan Liu, Lin Jun, Young-Shin Singamaneni, Srikanth |
description | Solar-driven desalination, which involves the conversion of solar energy to heat for freshwater generation, has been recognized as an attractive and sustainable desalination technology to alleviate freshwater shortage. In particular, photothermally driven membrane distillation (PMD) is a highly promising solar-driven desalination technology, especially in remote regions and disaster-struck communities, where no power infrastructure or waste heat from industrial plants is available. MXene, more specifically Ti
3
C
2
T
x
, with excellent photothermal properties, easy processability, and electrical conductivity offers a great opportunity for realizing highly efficient, stable and multifunctional PMD membranes. Herein, we realize a MXene composite aerogel comprised of hydroxyapatite nanowires and poly(vinyl alcohol) with high thermal efficiency (61%) and water flux (0.72 kg m
−2
h
−1
) under 0.8 sun irradiation (0.8 kW m
−2
), representing the first validation of highly efficient MXene-based PMD systems in treating ambient saline water. Owing to the strong interfacial interaction (
i.e.
, hydrogen bonding) between the building blocks, the MXene composite aerogel with high porosity (up to 91%) exhibited excellent mechanical stability. This highly interconnected porous network offers low resistance to vapor transport and low thermal conductivity, which minimizes conductive heat transfer across the aerogel, thus maximizing the thermal efficiency. Furthermore, the outstanding bactericidal activity induced by solar irradiation or electric potential makes the MXene composite aerogel a highly attractive candidate for PMD in the real world.
A MXene-based composite aerogel enabling highly efficient photothermally driven membrane distillation with dual-mode anti-biofouling properties make it highly appealing for solar-driven desalination. |
doi_str_mv | 10.1039/d1ta05058c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1TA05058C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580981838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-9b49b78245c48f20f01353967d12b1d40d4869f235182e33c5253a3ab46c979b3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhQdRsNRu3AsBd8JoHpOZZFnqEypuKrgbkkxiUzKTMUmV_nujlXo39yy-e-7hFMU5gtcIEn7ToSQghZSpo2KCsyqbitfHB83YaTGLcQPzMAhrzieFf37TgwZCB_-uHTA-AG2MVVYPCYxrn3xa69AL53agC_ZTD6DXvQwiH3U2JuucSNYP4MumNei2wpW977LhkGxvVfDSCgeUGIW0zqbdWXFihIt69renxev93WrxWC5fHp4W82WpMEOp5LLismG4oqpiBkMDEaGE102HsERdBbuK1dxgQhHDmhBFMSWCCFnVijdckmlxufcdg__Y6pjajd-GIb9sMWWQM8QIy9TVnspBYwzatGOwvQi7FsH2p9P2Fq3mv50uMnyxh0NUB-6_c_IN2XRz7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580981838</pqid></control><display><type>article</type><title>MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Cao, Sisi ; Wu, Xuanhao ; Zhu, Yaguang ; Gupta, Prashant ; Martinez, Adrian ; Zhang, Yunzhu ; Ghim, Deoukchen ; Wang, Yixuan ; Liu, Lin ; Jun, Young-Shin ; Singamaneni, Srikanth</creator><creatorcontrib>Cao, Sisi ; Wu, Xuanhao ; Zhu, Yaguang ; Gupta, Prashant ; Martinez, Adrian ; Zhang, Yunzhu ; Ghim, Deoukchen ; Wang, Yixuan ; Liu, Lin ; Jun, Young-Shin ; Singamaneni, Srikanth</creatorcontrib><description>Solar-driven desalination, which involves the conversion of solar energy to heat for freshwater generation, has been recognized as an attractive and sustainable desalination technology to alleviate freshwater shortage. In particular, photothermally driven membrane distillation (PMD) is a highly promising solar-driven desalination technology, especially in remote regions and disaster-struck communities, where no power infrastructure or waste heat from industrial plants is available. MXene, more specifically Ti
3
C
2
T
x
, with excellent photothermal properties, easy processability, and electrical conductivity offers a great opportunity for realizing highly efficient, stable and multifunctional PMD membranes. Herein, we realize a MXene composite aerogel comprised of hydroxyapatite nanowires and poly(vinyl alcohol) with high thermal efficiency (61%) and water flux (0.72 kg m
−2
h
−1
) under 0.8 sun irradiation (0.8 kW m
−2
), representing the first validation of highly efficient MXene-based PMD systems in treating ambient saline water. Owing to the strong interfacial interaction (
i.e.
, hydrogen bonding) between the building blocks, the MXene composite aerogel with high porosity (up to 91%) exhibited excellent mechanical stability. This highly interconnected porous network offers low resistance to vapor transport and low thermal conductivity, which minimizes conductive heat transfer across the aerogel, thus maximizing the thermal efficiency. Furthermore, the outstanding bactericidal activity induced by solar irradiation or electric potential makes the MXene composite aerogel a highly attractive candidate for PMD in the real world.
A MXene-based composite aerogel enabling highly efficient photothermally driven membrane distillation with dual-mode anti-biofouling properties make it highly appealing for solar-driven desalination.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta05058c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aerogels ; Antiinfectives and antibacterials ; Bactericidal activity ; Bonding strength ; Conductive heat transfer ; Desalination ; Distillation ; Electric potential ; Electrical conductivity ; Electrical resistivity ; Heat transfer ; Hydrogen bonding ; Hydroxyapatite ; Industrial plants ; Irradiation ; Low resistance ; Membranes ; MXenes ; Nanotechnology ; Nanowires ; Photothermal conversion ; Polyvinyl alcohol ; Porosity ; Radiation ; Remote regions ; Saline water ; Solar energy ; Solar energy conversion ; Technology ; Thermal conductivity ; Thermodynamic efficiency ; Vapor resistance</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22585-22596</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-9b49b78245c48f20f01353967d12b1d40d4869f235182e33c5253a3ab46c979b3</citedby><cites>FETCH-LOGICAL-c281t-9b49b78245c48f20f01353967d12b1d40d4869f235182e33c5253a3ab46c979b3</cites><orcidid>0000-0002-7203-2613 ; 0000-0001-6177-6089 ; 0000-0003-4648-2984 ; 0000-0002-1522-4491 ; 0000-0003-2041-5820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cao, Sisi</creatorcontrib><creatorcontrib>Wu, Xuanhao</creatorcontrib><creatorcontrib>Zhu, Yaguang</creatorcontrib><creatorcontrib>Gupta, Prashant</creatorcontrib><creatorcontrib>Martinez, Adrian</creatorcontrib><creatorcontrib>Zhang, Yunzhu</creatorcontrib><creatorcontrib>Ghim, Deoukchen</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Jun, Young-Shin</creatorcontrib><creatorcontrib>Singamaneni, Srikanth</creatorcontrib><title>MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Solar-driven desalination, which involves the conversion of solar energy to heat for freshwater generation, has been recognized as an attractive and sustainable desalination technology to alleviate freshwater shortage. In particular, photothermally driven membrane distillation (PMD) is a highly promising solar-driven desalination technology, especially in remote regions and disaster-struck communities, where no power infrastructure or waste heat from industrial plants is available. MXene, more specifically Ti
3
C
2
T
x
, with excellent photothermal properties, easy processability, and electrical conductivity offers a great opportunity for realizing highly efficient, stable and multifunctional PMD membranes. Herein, we realize a MXene composite aerogel comprised of hydroxyapatite nanowires and poly(vinyl alcohol) with high thermal efficiency (61%) and water flux (0.72 kg m
−2
h
−1
) under 0.8 sun irradiation (0.8 kW m
−2
), representing the first validation of highly efficient MXene-based PMD systems in treating ambient saline water. Owing to the strong interfacial interaction (
i.e.
, hydrogen bonding) between the building blocks, the MXene composite aerogel with high porosity (up to 91%) exhibited excellent mechanical stability. This highly interconnected porous network offers low resistance to vapor transport and low thermal conductivity, which minimizes conductive heat transfer across the aerogel, thus maximizing the thermal efficiency. Furthermore, the outstanding bactericidal activity induced by solar irradiation or electric potential makes the MXene composite aerogel a highly attractive candidate for PMD in the real world.
A MXene-based composite aerogel enabling highly efficient photothermally driven membrane distillation with dual-mode anti-biofouling properties make it highly appealing for solar-driven desalination.</description><subject>Aerogels</subject><subject>Antiinfectives and antibacterials</subject><subject>Bactericidal activity</subject><subject>Bonding strength</subject><subject>Conductive heat transfer</subject><subject>Desalination</subject><subject>Distillation</subject><subject>Electric potential</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Heat transfer</subject><subject>Hydrogen bonding</subject><subject>Hydroxyapatite</subject><subject>Industrial plants</subject><subject>Irradiation</subject><subject>Low resistance</subject><subject>Membranes</subject><subject>MXenes</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Photothermal conversion</subject><subject>Polyvinyl alcohol</subject><subject>Porosity</subject><subject>Radiation</subject><subject>Remote regions</subject><subject>Saline water</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Technology</subject><subject>Thermal conductivity</subject><subject>Thermodynamic efficiency</subject><subject>Vapor resistance</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhQdRsNRu3AsBd8JoHpOZZFnqEypuKrgbkkxiUzKTMUmV_nujlXo39yy-e-7hFMU5gtcIEn7ToSQghZSpo2KCsyqbitfHB83YaTGLcQPzMAhrzieFf37TgwZCB_-uHTA-AG2MVVYPCYxrn3xa69AL53agC_ZTD6DXvQwiH3U2JuucSNYP4MumNei2wpW977LhkGxvVfDSCgeUGIW0zqbdWXFihIt69renxev93WrxWC5fHp4W82WpMEOp5LLismG4oqpiBkMDEaGE102HsERdBbuK1dxgQhHDmhBFMSWCCFnVijdckmlxufcdg__Y6pjajd-GIb9sMWWQM8QIy9TVnspBYwzatGOwvQi7FsH2p9P2Fq3mv50uMnyxh0NUB-6_c_IN2XRz7A</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Cao, Sisi</creator><creator>Wu, Xuanhao</creator><creator>Zhu, Yaguang</creator><creator>Gupta, Prashant</creator><creator>Martinez, Adrian</creator><creator>Zhang, Yunzhu</creator><creator>Ghim, Deoukchen</creator><creator>Wang, Yixuan</creator><creator>Liu, Lin</creator><creator>Jun, Young-Shin</creator><creator>Singamaneni, Srikanth</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7203-2613</orcidid><orcidid>https://orcid.org/0000-0001-6177-6089</orcidid><orcidid>https://orcid.org/0000-0003-4648-2984</orcidid><orcidid>https://orcid.org/0000-0002-1522-4491</orcidid><orcidid>https://orcid.org/0000-0003-2041-5820</orcidid></search><sort><creationdate>20211012</creationdate><title>MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability</title><author>Cao, Sisi ; Wu, Xuanhao ; Zhu, Yaguang ; Gupta, Prashant ; Martinez, Adrian ; Zhang, Yunzhu ; Ghim, Deoukchen ; Wang, Yixuan ; Liu, Lin ; Jun, Young-Shin ; Singamaneni, Srikanth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-9b49b78245c48f20f01353967d12b1d40d4869f235182e33c5253a3ab46c979b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerogels</topic><topic>Antiinfectives and antibacterials</topic><topic>Bactericidal activity</topic><topic>Bonding strength</topic><topic>Conductive heat transfer</topic><topic>Desalination</topic><topic>Distillation</topic><topic>Electric potential</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Heat transfer</topic><topic>Hydrogen bonding</topic><topic>Hydroxyapatite</topic><topic>Industrial plants</topic><topic>Irradiation</topic><topic>Low resistance</topic><topic>Membranes</topic><topic>MXenes</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Photothermal conversion</topic><topic>Polyvinyl alcohol</topic><topic>Porosity</topic><topic>Radiation</topic><topic>Remote regions</topic><topic>Saline water</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Technology</topic><topic>Thermal conductivity</topic><topic>Thermodynamic efficiency</topic><topic>Vapor resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Sisi</creatorcontrib><creatorcontrib>Wu, Xuanhao</creatorcontrib><creatorcontrib>Zhu, Yaguang</creatorcontrib><creatorcontrib>Gupta, Prashant</creatorcontrib><creatorcontrib>Martinez, Adrian</creatorcontrib><creatorcontrib>Zhang, Yunzhu</creatorcontrib><creatorcontrib>Ghim, Deoukchen</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Jun, Young-Shin</creatorcontrib><creatorcontrib>Singamaneni, Srikanth</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Sisi</au><au>Wu, Xuanhao</au><au>Zhu, Yaguang</au><au>Gupta, Prashant</au><au>Martinez, Adrian</au><au>Zhang, Yunzhu</au><au>Ghim, Deoukchen</au><au>Wang, Yixuan</au><au>Liu, Lin</au><au>Jun, Young-Shin</au><au>Singamaneni, Srikanth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-10-12</date><risdate>2021</risdate><volume>9</volume><issue>39</issue><spage>22585</spage><epage>22596</epage><pages>22585-22596</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Solar-driven desalination, which involves the conversion of solar energy to heat for freshwater generation, has been recognized as an attractive and sustainable desalination technology to alleviate freshwater shortage. In particular, photothermally driven membrane distillation (PMD) is a highly promising solar-driven desalination technology, especially in remote regions and disaster-struck communities, where no power infrastructure or waste heat from industrial plants is available. MXene, more specifically Ti
3
C
2
T
x
, with excellent photothermal properties, easy processability, and electrical conductivity offers a great opportunity for realizing highly efficient, stable and multifunctional PMD membranes. Herein, we realize a MXene composite aerogel comprised of hydroxyapatite nanowires and poly(vinyl alcohol) with high thermal efficiency (61%) and water flux (0.72 kg m
−2
h
−1
) under 0.8 sun irradiation (0.8 kW m
−2
), representing the first validation of highly efficient MXene-based PMD systems in treating ambient saline water. Owing to the strong interfacial interaction (
i.e.
, hydrogen bonding) between the building blocks, the MXene composite aerogel with high porosity (up to 91%) exhibited excellent mechanical stability. This highly interconnected porous network offers low resistance to vapor transport and low thermal conductivity, which minimizes conductive heat transfer across the aerogel, thus maximizing the thermal efficiency. Furthermore, the outstanding bactericidal activity induced by solar irradiation or electric potential makes the MXene composite aerogel a highly attractive candidate for PMD in the real world.
A MXene-based composite aerogel enabling highly efficient photothermally driven membrane distillation with dual-mode anti-biofouling properties make it highly appealing for solar-driven desalination.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta05058c</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7203-2613</orcidid><orcidid>https://orcid.org/0000-0001-6177-6089</orcidid><orcidid>https://orcid.org/0000-0003-4648-2984</orcidid><orcidid>https://orcid.org/0000-0002-1522-4491</orcidid><orcidid>https://orcid.org/0000-0003-2041-5820</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22585-22596 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1TA05058C |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aerogels Antiinfectives and antibacterials Bactericidal activity Bonding strength Conductive heat transfer Desalination Distillation Electric potential Electrical conductivity Electrical resistivity Heat transfer Hydrogen bonding Hydroxyapatite Industrial plants Irradiation Low resistance Membranes MXenes Nanotechnology Nanowires Photothermal conversion Polyvinyl alcohol Porosity Radiation Remote regions Saline water Solar energy Solar energy conversion Technology Thermal conductivity Thermodynamic efficiency Vapor resistance |
title | MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MXene%20aerogel%20for%20efficient%20photothermally%20driven%20membrane%20distillation%20with%20dual-mode%20antimicrobial%20capability&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Cao,%20Sisi&rft.date=2021-10-12&rft.volume=9&rft.issue=39&rft.spage=22585&rft.epage=22596&rft.pages=22585-22596&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta05058c&rft_dat=%3Cproquest_cross%3E2580981838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580981838&rft_id=info:pmid/&rfr_iscdi=true |