MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability

Solar-driven desalination, which involves the conversion of solar energy to heat for freshwater generation, has been recognized as an attractive and sustainable desalination technology to alleviate freshwater shortage. In particular, photothermally driven membrane distillation (PMD) is a highly prom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22585-22596
Hauptverfasser: Cao, Sisi, Wu, Xuanhao, Zhu, Yaguang, Gupta, Prashant, Martinez, Adrian, Zhang, Yunzhu, Ghim, Deoukchen, Wang, Yixuan, Liu, Lin, Jun, Young-Shin, Singamaneni, Srikanth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22596
container_issue 39
container_start_page 22585
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Cao, Sisi
Wu, Xuanhao
Zhu, Yaguang
Gupta, Prashant
Martinez, Adrian
Zhang, Yunzhu
Ghim, Deoukchen
Wang, Yixuan
Liu, Lin
Jun, Young-Shin
Singamaneni, Srikanth
description Solar-driven desalination, which involves the conversion of solar energy to heat for freshwater generation, has been recognized as an attractive and sustainable desalination technology to alleviate freshwater shortage. In particular, photothermally driven membrane distillation (PMD) is a highly promising solar-driven desalination technology, especially in remote regions and disaster-struck communities, where no power infrastructure or waste heat from industrial plants is available. MXene, more specifically Ti 3 C 2 T x , with excellent photothermal properties, easy processability, and electrical conductivity offers a great opportunity for realizing highly efficient, stable and multifunctional PMD membranes. Herein, we realize a MXene composite aerogel comprised of hydroxyapatite nanowires and poly(vinyl alcohol) with high thermal efficiency (61%) and water flux (0.72 kg m −2 h −1 ) under 0.8 sun irradiation (0.8 kW m −2 ), representing the first validation of highly efficient MXene-based PMD systems in treating ambient saline water. Owing to the strong interfacial interaction ( i.e. , hydrogen bonding) between the building blocks, the MXene composite aerogel with high porosity (up to 91%) exhibited excellent mechanical stability. This highly interconnected porous network offers low resistance to vapor transport and low thermal conductivity, which minimizes conductive heat transfer across the aerogel, thus maximizing the thermal efficiency. Furthermore, the outstanding bactericidal activity induced by solar irradiation or electric potential makes the MXene composite aerogel a highly attractive candidate for PMD in the real world. A MXene-based composite aerogel enabling highly efficient photothermally driven membrane distillation with dual-mode anti-biofouling properties make it highly appealing for solar-driven desalination.
doi_str_mv 10.1039/d1ta05058c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1TA05058C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580981838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-9b49b78245c48f20f01353967d12b1d40d4869f235182e33c5253a3ab46c979b3</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhQdRsNRu3AsBd8JoHpOZZFnqEypuKrgbkkxiUzKTMUmV_nujlXo39yy-e-7hFMU5gtcIEn7ToSQghZSpo2KCsyqbitfHB83YaTGLcQPzMAhrzieFf37TgwZCB_-uHTA-AG2MVVYPCYxrn3xa69AL53agC_ZTD6DXvQwiH3U2JuucSNYP4MumNei2wpW977LhkGxvVfDSCgeUGIW0zqbdWXFihIt69renxev93WrxWC5fHp4W82WpMEOp5LLismG4oqpiBkMDEaGE102HsERdBbuK1dxgQhHDmhBFMSWCCFnVijdckmlxufcdg__Y6pjajd-GIb9sMWWQM8QIy9TVnspBYwzatGOwvQi7FsH2p9P2Fq3mv50uMnyxh0NUB-6_c_IN2XRz7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580981838</pqid></control><display><type>article</type><title>MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Cao, Sisi ; Wu, Xuanhao ; Zhu, Yaguang ; Gupta, Prashant ; Martinez, Adrian ; Zhang, Yunzhu ; Ghim, Deoukchen ; Wang, Yixuan ; Liu, Lin ; Jun, Young-Shin ; Singamaneni, Srikanth</creator><creatorcontrib>Cao, Sisi ; Wu, Xuanhao ; Zhu, Yaguang ; Gupta, Prashant ; Martinez, Adrian ; Zhang, Yunzhu ; Ghim, Deoukchen ; Wang, Yixuan ; Liu, Lin ; Jun, Young-Shin ; Singamaneni, Srikanth</creatorcontrib><description>Solar-driven desalination, which involves the conversion of solar energy to heat for freshwater generation, has been recognized as an attractive and sustainable desalination technology to alleviate freshwater shortage. In particular, photothermally driven membrane distillation (PMD) is a highly promising solar-driven desalination technology, especially in remote regions and disaster-struck communities, where no power infrastructure or waste heat from industrial plants is available. MXene, more specifically Ti 3 C 2 T x , with excellent photothermal properties, easy processability, and electrical conductivity offers a great opportunity for realizing highly efficient, stable and multifunctional PMD membranes. Herein, we realize a MXene composite aerogel comprised of hydroxyapatite nanowires and poly(vinyl alcohol) with high thermal efficiency (61%) and water flux (0.72 kg m −2 h −1 ) under 0.8 sun irradiation (0.8 kW m −2 ), representing the first validation of highly efficient MXene-based PMD systems in treating ambient saline water. Owing to the strong interfacial interaction ( i.e. , hydrogen bonding) between the building blocks, the MXene composite aerogel with high porosity (up to 91%) exhibited excellent mechanical stability. This highly interconnected porous network offers low resistance to vapor transport and low thermal conductivity, which minimizes conductive heat transfer across the aerogel, thus maximizing the thermal efficiency. Furthermore, the outstanding bactericidal activity induced by solar irradiation or electric potential makes the MXene composite aerogel a highly attractive candidate for PMD in the real world. A MXene-based composite aerogel enabling highly efficient photothermally driven membrane distillation with dual-mode anti-biofouling properties make it highly appealing for solar-driven desalination.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta05058c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aerogels ; Antiinfectives and antibacterials ; Bactericidal activity ; Bonding strength ; Conductive heat transfer ; Desalination ; Distillation ; Electric potential ; Electrical conductivity ; Electrical resistivity ; Heat transfer ; Hydrogen bonding ; Hydroxyapatite ; Industrial plants ; Irradiation ; Low resistance ; Membranes ; MXenes ; Nanotechnology ; Nanowires ; Photothermal conversion ; Polyvinyl alcohol ; Porosity ; Radiation ; Remote regions ; Saline water ; Solar energy ; Solar energy conversion ; Technology ; Thermal conductivity ; Thermodynamic efficiency ; Vapor resistance</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22585-22596</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-9b49b78245c48f20f01353967d12b1d40d4869f235182e33c5253a3ab46c979b3</citedby><cites>FETCH-LOGICAL-c281t-9b49b78245c48f20f01353967d12b1d40d4869f235182e33c5253a3ab46c979b3</cites><orcidid>0000-0002-7203-2613 ; 0000-0001-6177-6089 ; 0000-0003-4648-2984 ; 0000-0002-1522-4491 ; 0000-0003-2041-5820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cao, Sisi</creatorcontrib><creatorcontrib>Wu, Xuanhao</creatorcontrib><creatorcontrib>Zhu, Yaguang</creatorcontrib><creatorcontrib>Gupta, Prashant</creatorcontrib><creatorcontrib>Martinez, Adrian</creatorcontrib><creatorcontrib>Zhang, Yunzhu</creatorcontrib><creatorcontrib>Ghim, Deoukchen</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Jun, Young-Shin</creatorcontrib><creatorcontrib>Singamaneni, Srikanth</creatorcontrib><title>MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Solar-driven desalination, which involves the conversion of solar energy to heat for freshwater generation, has been recognized as an attractive and sustainable desalination technology to alleviate freshwater shortage. In particular, photothermally driven membrane distillation (PMD) is a highly promising solar-driven desalination technology, especially in remote regions and disaster-struck communities, where no power infrastructure or waste heat from industrial plants is available. MXene, more specifically Ti 3 C 2 T x , with excellent photothermal properties, easy processability, and electrical conductivity offers a great opportunity for realizing highly efficient, stable and multifunctional PMD membranes. Herein, we realize a MXene composite aerogel comprised of hydroxyapatite nanowires and poly(vinyl alcohol) with high thermal efficiency (61%) and water flux (0.72 kg m −2 h −1 ) under 0.8 sun irradiation (0.8 kW m −2 ), representing the first validation of highly efficient MXene-based PMD systems in treating ambient saline water. Owing to the strong interfacial interaction ( i.e. , hydrogen bonding) between the building blocks, the MXene composite aerogel with high porosity (up to 91%) exhibited excellent mechanical stability. This highly interconnected porous network offers low resistance to vapor transport and low thermal conductivity, which minimizes conductive heat transfer across the aerogel, thus maximizing the thermal efficiency. Furthermore, the outstanding bactericidal activity induced by solar irradiation or electric potential makes the MXene composite aerogel a highly attractive candidate for PMD in the real world. A MXene-based composite aerogel enabling highly efficient photothermally driven membrane distillation with dual-mode anti-biofouling properties make it highly appealing for solar-driven desalination.</description><subject>Aerogels</subject><subject>Antiinfectives and antibacterials</subject><subject>Bactericidal activity</subject><subject>Bonding strength</subject><subject>Conductive heat transfer</subject><subject>Desalination</subject><subject>Distillation</subject><subject>Electric potential</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Heat transfer</subject><subject>Hydrogen bonding</subject><subject>Hydroxyapatite</subject><subject>Industrial plants</subject><subject>Irradiation</subject><subject>Low resistance</subject><subject>Membranes</subject><subject>MXenes</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Photothermal conversion</subject><subject>Polyvinyl alcohol</subject><subject>Porosity</subject><subject>Radiation</subject><subject>Remote regions</subject><subject>Saline water</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Technology</subject><subject>Thermal conductivity</subject><subject>Thermodynamic efficiency</subject><subject>Vapor resistance</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEUhQdRsNRu3AsBd8JoHpOZZFnqEypuKrgbkkxiUzKTMUmV_nujlXo39yy-e-7hFMU5gtcIEn7ToSQghZSpo2KCsyqbitfHB83YaTGLcQPzMAhrzieFf37TgwZCB_-uHTA-AG2MVVYPCYxrn3xa69AL53agC_ZTD6DXvQwiH3U2JuucSNYP4MumNei2wpW977LhkGxvVfDSCgeUGIW0zqbdWXFihIt69renxev93WrxWC5fHp4W82WpMEOp5LLismG4oqpiBkMDEaGE102HsERdBbuK1dxgQhHDmhBFMSWCCFnVijdckmlxufcdg__Y6pjajd-GIb9sMWWQM8QIy9TVnspBYwzatGOwvQi7FsH2p9P2Fq3mv50uMnyxh0NUB-6_c_IN2XRz7A</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Cao, Sisi</creator><creator>Wu, Xuanhao</creator><creator>Zhu, Yaguang</creator><creator>Gupta, Prashant</creator><creator>Martinez, Adrian</creator><creator>Zhang, Yunzhu</creator><creator>Ghim, Deoukchen</creator><creator>Wang, Yixuan</creator><creator>Liu, Lin</creator><creator>Jun, Young-Shin</creator><creator>Singamaneni, Srikanth</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7203-2613</orcidid><orcidid>https://orcid.org/0000-0001-6177-6089</orcidid><orcidid>https://orcid.org/0000-0003-4648-2984</orcidid><orcidid>https://orcid.org/0000-0002-1522-4491</orcidid><orcidid>https://orcid.org/0000-0003-2041-5820</orcidid></search><sort><creationdate>20211012</creationdate><title>MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability</title><author>Cao, Sisi ; Wu, Xuanhao ; Zhu, Yaguang ; Gupta, Prashant ; Martinez, Adrian ; Zhang, Yunzhu ; Ghim, Deoukchen ; Wang, Yixuan ; Liu, Lin ; Jun, Young-Shin ; Singamaneni, Srikanth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-9b49b78245c48f20f01353967d12b1d40d4869f235182e33c5253a3ab46c979b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerogels</topic><topic>Antiinfectives and antibacterials</topic><topic>Bactericidal activity</topic><topic>Bonding strength</topic><topic>Conductive heat transfer</topic><topic>Desalination</topic><topic>Distillation</topic><topic>Electric potential</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Heat transfer</topic><topic>Hydrogen bonding</topic><topic>Hydroxyapatite</topic><topic>Industrial plants</topic><topic>Irradiation</topic><topic>Low resistance</topic><topic>Membranes</topic><topic>MXenes</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Photothermal conversion</topic><topic>Polyvinyl alcohol</topic><topic>Porosity</topic><topic>Radiation</topic><topic>Remote regions</topic><topic>Saline water</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Technology</topic><topic>Thermal conductivity</topic><topic>Thermodynamic efficiency</topic><topic>Vapor resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Sisi</creatorcontrib><creatorcontrib>Wu, Xuanhao</creatorcontrib><creatorcontrib>Zhu, Yaguang</creatorcontrib><creatorcontrib>Gupta, Prashant</creatorcontrib><creatorcontrib>Martinez, Adrian</creatorcontrib><creatorcontrib>Zhang, Yunzhu</creatorcontrib><creatorcontrib>Ghim, Deoukchen</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Jun, Young-Shin</creatorcontrib><creatorcontrib>Singamaneni, Srikanth</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Sisi</au><au>Wu, Xuanhao</au><au>Zhu, Yaguang</au><au>Gupta, Prashant</au><au>Martinez, Adrian</au><au>Zhang, Yunzhu</au><au>Ghim, Deoukchen</au><au>Wang, Yixuan</au><au>Liu, Lin</au><au>Jun, Young-Shin</au><au>Singamaneni, Srikanth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-10-12</date><risdate>2021</risdate><volume>9</volume><issue>39</issue><spage>22585</spage><epage>22596</epage><pages>22585-22596</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Solar-driven desalination, which involves the conversion of solar energy to heat for freshwater generation, has been recognized as an attractive and sustainable desalination technology to alleviate freshwater shortage. In particular, photothermally driven membrane distillation (PMD) is a highly promising solar-driven desalination technology, especially in remote regions and disaster-struck communities, where no power infrastructure or waste heat from industrial plants is available. MXene, more specifically Ti 3 C 2 T x , with excellent photothermal properties, easy processability, and electrical conductivity offers a great opportunity for realizing highly efficient, stable and multifunctional PMD membranes. Herein, we realize a MXene composite aerogel comprised of hydroxyapatite nanowires and poly(vinyl alcohol) with high thermal efficiency (61%) and water flux (0.72 kg m −2 h −1 ) under 0.8 sun irradiation (0.8 kW m −2 ), representing the first validation of highly efficient MXene-based PMD systems in treating ambient saline water. Owing to the strong interfacial interaction ( i.e. , hydrogen bonding) between the building blocks, the MXene composite aerogel with high porosity (up to 91%) exhibited excellent mechanical stability. This highly interconnected porous network offers low resistance to vapor transport and low thermal conductivity, which minimizes conductive heat transfer across the aerogel, thus maximizing the thermal efficiency. Furthermore, the outstanding bactericidal activity induced by solar irradiation or electric potential makes the MXene composite aerogel a highly attractive candidate for PMD in the real world. A MXene-based composite aerogel enabling highly efficient photothermally driven membrane distillation with dual-mode anti-biofouling properties make it highly appealing for solar-driven desalination.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta05058c</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7203-2613</orcidid><orcidid>https://orcid.org/0000-0001-6177-6089</orcidid><orcidid>https://orcid.org/0000-0003-4648-2984</orcidid><orcidid>https://orcid.org/0000-0002-1522-4491</orcidid><orcidid>https://orcid.org/0000-0003-2041-5820</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-10, Vol.9 (39), p.22585-22596
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D1TA05058C
source Royal Society Of Chemistry Journals 2008-
subjects Aerogels
Antiinfectives and antibacterials
Bactericidal activity
Bonding strength
Conductive heat transfer
Desalination
Distillation
Electric potential
Electrical conductivity
Electrical resistivity
Heat transfer
Hydrogen bonding
Hydroxyapatite
Industrial plants
Irradiation
Low resistance
Membranes
MXenes
Nanotechnology
Nanowires
Photothermal conversion
Polyvinyl alcohol
Porosity
Radiation
Remote regions
Saline water
Solar energy
Solar energy conversion
Technology
Thermal conductivity
Thermodynamic efficiency
Vapor resistance
title MXene aerogel for efficient photothermally driven membrane distillation with dual-mode antimicrobial capability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MXene%20aerogel%20for%20efficient%20photothermally%20driven%20membrane%20distillation%20with%20dual-mode%20antimicrobial%20capability&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Cao,%20Sisi&rft.date=2021-10-12&rft.volume=9&rft.issue=39&rft.spage=22585&rft.epage=22596&rft.pages=22585-22596&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta05058c&rft_dat=%3Cproquest_cross%3E2580981838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580981838&rft_id=info:pmid/&rfr_iscdi=true