Active gels, heavy tails, and the cytoskeleton

The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-11, Vol.17 (43), p.9876-9892
Hauptverfasser: Swartz, Daniel W, Camley, Brian A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9892
container_issue 43
container_start_page 9876
container_title Soft matter
container_volume 17
creator Swartz, Daniel W
Camley, Brian A
description The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to "cytoquakes" or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels. Rare large movements of the cytoskeleton may arise from the combination of many small molecular motors acting independently, leading to anomalous diffusive behavior.
doi_str_mv 10.1039/d1sm00705j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1SM00705J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595644943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-db6f6470db8928cc6db513f87b7c9d152b8db6f5eb78dec465dfa7cb74ce034f3</originalsourceid><addsrcrecordid>eNpd0MtLw0AQBvBFFKzVi3ch4EXE1N3sM8dS31Q8qOAt7GNiU9Ok3d0W-t-bWqngaWbgx8fwIXRK8IBgml87EmYYS8yne6hHJGOpUEzt73b6cYiOQphiTBUjoocGQxurFSSfUIerZAJ6tU6irjaHblwSJ5DYdWzDF9QQ2-YYHZS6DnDyO_vo_e72bfSQjl_uH0fDcWopYTF1RpSCSeyMyjNlrXCGE1oqaaTNHeGZURvCwUjlwDLBXamlNZJZwJSVtI8utrlz3y6WEGIxq4KFutYNtMtQZFxlCguqZEfP_9Fpu_RN912nci4Yyxnt1OVWWd-G4KEs5r6aab8uCC421RU35PX5p7qnDp9tsQ925_6qpd_F6mn2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595644943</pqid></control><display><type>article</type><title>Active gels, heavy tails, and the cytoskeleton</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Swartz, Daniel W ; Camley, Brian A</creator><creatorcontrib>Swartz, Daniel W ; Camley, Brian A</creatorcontrib><description>The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to "cytoquakes" or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels. Rare large movements of the cytoskeleton may arise from the combination of many small molecular motors acting independently, leading to anomalous diffusive behavior.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm00705j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cytoskeleton ; Dipoles ; Force distribution ; Gels ; Molecular motors ; Power law ; Tails ; Two dimensional models</subject><ispartof>Soft matter, 2021-11, Vol.17 (43), p.9876-9892</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-db6f6470db8928cc6db513f87b7c9d152b8db6f5eb78dec465dfa7cb74ce034f3</citedby><cites>FETCH-LOGICAL-c314t-db6f6470db8928cc6db513f87b7c9d152b8db6f5eb78dec465dfa7cb74ce034f3</cites><orcidid>0000-0002-0765-6956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Swartz, Daniel W</creatorcontrib><creatorcontrib>Camley, Brian A</creatorcontrib><title>Active gels, heavy tails, and the cytoskeleton</title><title>Soft matter</title><description>The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to "cytoquakes" or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels. Rare large movements of the cytoskeleton may arise from the combination of many small molecular motors acting independently, leading to anomalous diffusive behavior.</description><subject>Cytoskeleton</subject><subject>Dipoles</subject><subject>Force distribution</subject><subject>Gels</subject><subject>Molecular motors</subject><subject>Power law</subject><subject>Tails</subject><subject>Two dimensional models</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0MtLw0AQBvBFFKzVi3ch4EXE1N3sM8dS31Q8qOAt7GNiU9Ok3d0W-t-bWqngaWbgx8fwIXRK8IBgml87EmYYS8yne6hHJGOpUEzt73b6cYiOQphiTBUjoocGQxurFSSfUIerZAJ6tU6irjaHblwSJ5DYdWzDF9QQ2-YYHZS6DnDyO_vo_e72bfSQjl_uH0fDcWopYTF1RpSCSeyMyjNlrXCGE1oqaaTNHeGZURvCwUjlwDLBXamlNZJZwJSVtI8utrlz3y6WEGIxq4KFutYNtMtQZFxlCguqZEfP_9Fpu_RN912nci4Yyxnt1OVWWd-G4KEs5r6aab8uCC421RU35PX5p7qnDp9tsQ925_6qpd_F6mn2</recordid><startdate>20211110</startdate><enddate>20211110</enddate><creator>Swartz, Daniel W</creator><creator>Camley, Brian A</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0765-6956</orcidid></search><sort><creationdate>20211110</creationdate><title>Active gels, heavy tails, and the cytoskeleton</title><author>Swartz, Daniel W ; Camley, Brian A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-db6f6470db8928cc6db513f87b7c9d152b8db6f5eb78dec465dfa7cb74ce034f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cytoskeleton</topic><topic>Dipoles</topic><topic>Force distribution</topic><topic>Gels</topic><topic>Molecular motors</topic><topic>Power law</topic><topic>Tails</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swartz, Daniel W</creatorcontrib><creatorcontrib>Camley, Brian A</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swartz, Daniel W</au><au>Camley, Brian A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active gels, heavy tails, and the cytoskeleton</atitle><jtitle>Soft matter</jtitle><date>2021-11-10</date><risdate>2021</risdate><volume>17</volume><issue>43</issue><spage>9876</spage><epage>9892</epage><pages>9876-9892</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to "cytoquakes" or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels. Rare large movements of the cytoskeleton may arise from the combination of many small molecular motors acting independently, leading to anomalous diffusive behavior.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1sm00705j</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0765-6956</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-11, Vol.17 (43), p.9876-9892
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_D1SM00705J
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Cytoskeleton
Dipoles
Force distribution
Gels
Molecular motors
Power law
Tails
Two dimensional models
title Active gels, heavy tails, and the cytoskeleton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20gels,%20heavy%20tails,%20and%20the%20cytoskeleton&rft.jtitle=Soft%20matter&rft.au=Swartz,%20Daniel%20W&rft.date=2021-11-10&rft.volume=17&rft.issue=43&rft.spage=9876&rft.epage=9892&rft.pages=9876-9892&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm00705j&rft_dat=%3Cproquest_cross%3E2595644943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595644943&rft_id=info:pmid/&rfr_iscdi=true