Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions
Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have successfully simulated the coupling between a fluid and red blood cells. This paper introduces an alternative phase-field model formulation of two-dimens...
Gespeichert in:
Veröffentlicht in: | Soft matter 2021-11, Vol.17 (42), p.9587-9594 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9594 |
---|---|
container_issue | 42 |
container_start_page | 9587 |
container_title | Soft matter |
container_volume | 17 |
creator | Gallen, Andreu F Castro, Mario Hernandez-Machado, Aurora |
description | Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have successfully simulated the coupling between a fluid and red blood cells. This paper introduces an alternative phase-field model formulation of two-dimensional cells that solves the vorticity and stream function that simplifies the numerical implementation. We integrate red blood cell dynamics immersed in a Poiseuille flow and reproduce previously reported morphologies (slippers or parachutes). In the case of flow in a very wide channel, we discover a new metastable shape referred to as '
anti
-parachute' that evolves into a horizontal slipper centered on the channel. This sort of metastable morphology may contribute to the dynamical response of the blood.
A novel model membrane modelling can be used to study red blood cells by solving the vorticity and stream function, simplifying the numerical implementation, and produce a new metastable shape for lower confinement. |
doi_str_mv | 10.1039/d1sm00559f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1SM00559F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582805476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-8f55a1cc5b6ee6f51e03a5a64af6fb5a1ce4d79e0a172bfaf1983624a3a40f7e3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoWKsX70LAiwirySbZD2-lWhUqQlXwtmSzE5q6u6nJ1lJ_vWkrFTzNMO8zw8w7CJ1SckUJy68r6htChMj1HurRlPMoyXi2v8vZ-yE68n5GCMs4TXroYwIVLmtrK6ygrj02La7tEk9g1dq68rhdNCU4rEPxBg_wl3WdUaZbRaX0oVVNpZOqA2e-ZWdsi63GfirnsJnULS2uTAOtD5I_Rgda1h5OfmMfvY3uXocP0fj5_nE4GEeKUd5FmRZCUqVEmQAkWlAgTAqZcKkTXa4l4FWaA5E0jUstNc0zlsRcMsmJToH10cV27tzZzwX4rmiMX18nW7ALX8QiizMieJoE9PwfOrML14btApXHjOYi44G63FLKWe8d6GLuTCPdqqCkWPte3NKXp43vowCfbWHn1Y77-wv7AdvJgMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592319584</pqid></control><display><type>article</type><title>Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Gallen, Andreu F ; Castro, Mario ; Hernandez-Machado, Aurora</creator><creatorcontrib>Gallen, Andreu F ; Castro, Mario ; Hernandez-Machado, Aurora</creatorcontrib><description>Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have successfully simulated the coupling between a fluid and red blood cells. This paper introduces an alternative phase-field model formulation of two-dimensional cells that solves the vorticity and stream function that simplifies the numerical implementation. We integrate red blood cell dynamics immersed in a Poiseuille flow and reproduce previously reported morphologies (slippers or parachutes). In the case of flow in a very wide channel, we discover a new metastable shape referred to as '
anti
-parachute' that evolves into a horizontal slipper centered on the channel. This sort of metastable morphology may contribute to the dynamical response of the blood.
A novel model membrane modelling can be used to study red blood cells by solving the vorticity and stream function, simplifying the numerical implementation, and produce a new metastable shape for lower confinement.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm00559f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Blood ; Erythrocytes ; Fluid dynamics ; Fluid flow ; Laminar flow ; Low Reynolds number flow ; Mathematical models ; Mechanical properties ; Morphology ; Numerical methods ; Parachutes ; Reynolds number ; Stream functions (fluids) ; Two dimensional models ; Vorticity</subject><ispartof>Soft matter, 2021-11, Vol.17 (42), p.9587-9594</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-8f55a1cc5b6ee6f51e03a5a64af6fb5a1ce4d79e0a172bfaf1983624a3a40f7e3</citedby><cites>FETCH-LOGICAL-c314t-8f55a1cc5b6ee6f51e03a5a64af6fb5a1ce4d79e0a172bfaf1983624a3a40f7e3</cites><orcidid>0000-0002-4555-7238 ; 0000-0002-0397-5255 ; 0000-0003-3288-6144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gallen, Andreu F</creatorcontrib><creatorcontrib>Castro, Mario</creatorcontrib><creatorcontrib>Hernandez-Machado, Aurora</creatorcontrib><title>Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions</title><title>Soft matter</title><description>Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have successfully simulated the coupling between a fluid and red blood cells. This paper introduces an alternative phase-field model formulation of two-dimensional cells that solves the vorticity and stream function that simplifies the numerical implementation. We integrate red blood cell dynamics immersed in a Poiseuille flow and reproduce previously reported morphologies (slippers or parachutes). In the case of flow in a very wide channel, we discover a new metastable shape referred to as '
anti
-parachute' that evolves into a horizontal slipper centered on the channel. This sort of metastable morphology may contribute to the dynamical response of the blood.
A novel model membrane modelling can be used to study red blood cells by solving the vorticity and stream function, simplifying the numerical implementation, and produce a new metastable shape for lower confinement.</description><subject>Blood</subject><subject>Erythrocytes</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Laminar flow</subject><subject>Low Reynolds number flow</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Numerical methods</subject><subject>Parachutes</subject><subject>Reynolds number</subject><subject>Stream functions (fluids)</subject><subject>Two dimensional models</subject><subject>Vorticity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LAzEQhoMoWKsX70LAiwirySbZD2-lWhUqQlXwtmSzE5q6u6nJ1lJ_vWkrFTzNMO8zw8w7CJ1SckUJy68r6htChMj1HurRlPMoyXi2v8vZ-yE68n5GCMs4TXroYwIVLmtrK6ygrj02La7tEk9g1dq68rhdNCU4rEPxBg_wl3WdUaZbRaX0oVVNpZOqA2e-ZWdsi63GfirnsJnULS2uTAOtD5I_Rgda1h5OfmMfvY3uXocP0fj5_nE4GEeKUd5FmRZCUqVEmQAkWlAgTAqZcKkTXa4l4FWaA5E0jUstNc0zlsRcMsmJToH10cV27tzZzwX4rmiMX18nW7ALX8QiizMieJoE9PwfOrML14btApXHjOYi44G63FLKWe8d6GLuTCPdqqCkWPte3NKXp43vowCfbWHn1Y77-wv7AdvJgMs</recordid><startdate>20211103</startdate><enddate>20211103</enddate><creator>Gallen, Andreu F</creator><creator>Castro, Mario</creator><creator>Hernandez-Machado, Aurora</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4555-7238</orcidid><orcidid>https://orcid.org/0000-0002-0397-5255</orcidid><orcidid>https://orcid.org/0000-0003-3288-6144</orcidid></search><sort><creationdate>20211103</creationdate><title>Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions</title><author>Gallen, Andreu F ; Castro, Mario ; Hernandez-Machado, Aurora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-8f55a1cc5b6ee6f51e03a5a64af6fb5a1ce4d79e0a172bfaf1983624a3a40f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood</topic><topic>Erythrocytes</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Laminar flow</topic><topic>Low Reynolds number flow</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Numerical methods</topic><topic>Parachutes</topic><topic>Reynolds number</topic><topic>Stream functions (fluids)</topic><topic>Two dimensional models</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallen, Andreu F</creatorcontrib><creatorcontrib>Castro, Mario</creatorcontrib><creatorcontrib>Hernandez-Machado, Aurora</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallen, Andreu F</au><au>Castro, Mario</au><au>Hernandez-Machado, Aurora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions</atitle><jtitle>Soft matter</jtitle><date>2021-11-03</date><risdate>2021</risdate><volume>17</volume><issue>42</issue><spage>9587</spage><epage>9594</epage><pages>9587-9594</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have successfully simulated the coupling between a fluid and red blood cells. This paper introduces an alternative phase-field model formulation of two-dimensional cells that solves the vorticity and stream function that simplifies the numerical implementation. We integrate red blood cell dynamics immersed in a Poiseuille flow and reproduce previously reported morphologies (slippers or parachutes). In the case of flow in a very wide channel, we discover a new metastable shape referred to as '
anti
-parachute' that evolves into a horizontal slipper centered on the channel. This sort of metastable morphology may contribute to the dynamical response of the blood.
A novel model membrane modelling can be used to study red blood cells by solving the vorticity and stream function, simplifying the numerical implementation, and produce a new metastable shape for lower confinement.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1sm00559f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4555-7238</orcidid><orcidid>https://orcid.org/0000-0002-0397-5255</orcidid><orcidid>https://orcid.org/0000-0003-3288-6144</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2021-11, Vol.17 (42), p.9587-9594 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1SM00559F |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Blood Erythrocytes Fluid dynamics Fluid flow Laminar flow Low Reynolds number flow Mathematical models Mechanical properties Morphology Numerical methods Parachutes Reynolds number Stream functions (fluids) Two dimensional models Vorticity |
title | Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Red%20blood%20cells%20in%20low%20Reynolds%20number%20flow:%20A%20vorticity-based%20characterization%20of%20shapes%20in%20two%20dimensions&rft.jtitle=Soft%20matter&rft.au=Gallen,%20Andreu%20F&rft.date=2021-11-03&rft.volume=17&rft.issue=42&rft.spage=9587&rft.epage=9594&rft.pages=9587-9594&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm00559f&rft_dat=%3Cproquest_cross%3E2582805476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592319584&rft_id=info:pmid/&rfr_iscdi=true |