Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions

Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have successfully simulated the coupling between a fluid and red blood cells. This paper introduces an alternative phase-field model formulation of two-dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-11, Vol.17 (42), p.9587-9594
Hauptverfasser: Gallen, Andreu F, Castro, Mario, Hernandez-Machado, Aurora
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9594
container_issue 42
container_start_page 9587
container_title Soft matter
container_volume 17
creator Gallen, Andreu F
Castro, Mario
Hernandez-Machado, Aurora
description Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have successfully simulated the coupling between a fluid and red blood cells. This paper introduces an alternative phase-field model formulation of two-dimensional cells that solves the vorticity and stream function that simplifies the numerical implementation. We integrate red blood cell dynamics immersed in a Poiseuille flow and reproduce previously reported morphologies (slippers or parachutes). In the case of flow in a very wide channel, we discover a new metastable shape referred to as ' anti -parachute' that evolves into a horizontal slipper centered on the channel. This sort of metastable morphology may contribute to the dynamical response of the blood. A novel model membrane modelling can be used to study red blood cells by solving the vorticity and stream function, simplifying the numerical implementation, and produce a new metastable shape for lower confinement.
doi_str_mv 10.1039/d1sm00559f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1SM00559F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582805476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-8f55a1cc5b6ee6f51e03a5a64af6fb5a1ce4d79e0a172bfaf1983624a3a40f7e3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoWKsX70LAiwirySbZD2-lWhUqQlXwtmSzE5q6u6nJ1lJ_vWkrFTzNMO8zw8w7CJ1SckUJy68r6htChMj1HurRlPMoyXi2v8vZ-yE68n5GCMs4TXroYwIVLmtrK6ygrj02La7tEk9g1dq68rhdNCU4rEPxBg_wl3WdUaZbRaX0oVVNpZOqA2e-ZWdsi63GfirnsJnULS2uTAOtD5I_Rgda1h5OfmMfvY3uXocP0fj5_nE4GEeKUd5FmRZCUqVEmQAkWlAgTAqZcKkTXa4l4FWaA5E0jUstNc0zlsRcMsmJToH10cV27tzZzwX4rmiMX18nW7ALX8QiizMieJoE9PwfOrML14btApXHjOYi44G63FLKWe8d6GLuTCPdqqCkWPte3NKXp43vowCfbWHn1Y77-wv7AdvJgMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592319584</pqid></control><display><type>article</type><title>Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Gallen, Andreu F ; Castro, Mario ; Hernandez-Machado, Aurora</creator><creatorcontrib>Gallen, Andreu F ; Castro, Mario ; Hernandez-Machado, Aurora</creatorcontrib><description>Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have successfully simulated the coupling between a fluid and red blood cells. This paper introduces an alternative phase-field model formulation of two-dimensional cells that solves the vorticity and stream function that simplifies the numerical implementation. We integrate red blood cell dynamics immersed in a Poiseuille flow and reproduce previously reported morphologies (slippers or parachutes). In the case of flow in a very wide channel, we discover a new metastable shape referred to as ' anti -parachute' that evolves into a horizontal slipper centered on the channel. This sort of metastable morphology may contribute to the dynamical response of the blood. A novel model membrane modelling can be used to study red blood cells by solving the vorticity and stream function, simplifying the numerical implementation, and produce a new metastable shape for lower confinement.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm00559f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Blood ; Erythrocytes ; Fluid dynamics ; Fluid flow ; Laminar flow ; Low Reynolds number flow ; Mathematical models ; Mechanical properties ; Morphology ; Numerical methods ; Parachutes ; Reynolds number ; Stream functions (fluids) ; Two dimensional models ; Vorticity</subject><ispartof>Soft matter, 2021-11, Vol.17 (42), p.9587-9594</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-8f55a1cc5b6ee6f51e03a5a64af6fb5a1ce4d79e0a172bfaf1983624a3a40f7e3</citedby><cites>FETCH-LOGICAL-c314t-8f55a1cc5b6ee6f51e03a5a64af6fb5a1ce4d79e0a172bfaf1983624a3a40f7e3</cites><orcidid>0000-0002-4555-7238 ; 0000-0002-0397-5255 ; 0000-0003-3288-6144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gallen, Andreu F</creatorcontrib><creatorcontrib>Castro, Mario</creatorcontrib><creatorcontrib>Hernandez-Machado, Aurora</creatorcontrib><title>Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions</title><title>Soft matter</title><description>Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have successfully simulated the coupling between a fluid and red blood cells. This paper introduces an alternative phase-field model formulation of two-dimensional cells that solves the vorticity and stream function that simplifies the numerical implementation. We integrate red blood cell dynamics immersed in a Poiseuille flow and reproduce previously reported morphologies (slippers or parachutes). In the case of flow in a very wide channel, we discover a new metastable shape referred to as ' anti -parachute' that evolves into a horizontal slipper centered on the channel. This sort of metastable morphology may contribute to the dynamical response of the blood. A novel model membrane modelling can be used to study red blood cells by solving the vorticity and stream function, simplifying the numerical implementation, and produce a new metastable shape for lower confinement.</description><subject>Blood</subject><subject>Erythrocytes</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Laminar flow</subject><subject>Low Reynolds number flow</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Numerical methods</subject><subject>Parachutes</subject><subject>Reynolds number</subject><subject>Stream functions (fluids)</subject><subject>Two dimensional models</subject><subject>Vorticity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LAzEQhoMoWKsX70LAiwirySbZD2-lWhUqQlXwtmSzE5q6u6nJ1lJ_vWkrFTzNMO8zw8w7CJ1SckUJy68r6htChMj1HurRlPMoyXi2v8vZ-yE68n5GCMs4TXroYwIVLmtrK6ygrj02La7tEk9g1dq68rhdNCU4rEPxBg_wl3WdUaZbRaX0oVVNpZOqA2e-ZWdsi63GfirnsJnULS2uTAOtD5I_Rgda1h5OfmMfvY3uXocP0fj5_nE4GEeKUd5FmRZCUqVEmQAkWlAgTAqZcKkTXa4l4FWaA5E0jUstNc0zlsRcMsmJToH10cV27tzZzwX4rmiMX18nW7ALX8QiizMieJoE9PwfOrML14btApXHjOYi44G63FLKWe8d6GLuTCPdqqCkWPte3NKXp43vowCfbWHn1Y77-wv7AdvJgMs</recordid><startdate>20211103</startdate><enddate>20211103</enddate><creator>Gallen, Andreu F</creator><creator>Castro, Mario</creator><creator>Hernandez-Machado, Aurora</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4555-7238</orcidid><orcidid>https://orcid.org/0000-0002-0397-5255</orcidid><orcidid>https://orcid.org/0000-0003-3288-6144</orcidid></search><sort><creationdate>20211103</creationdate><title>Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions</title><author>Gallen, Andreu F ; Castro, Mario ; Hernandez-Machado, Aurora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-8f55a1cc5b6ee6f51e03a5a64af6fb5a1ce4d79e0a172bfaf1983624a3a40f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood</topic><topic>Erythrocytes</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Laminar flow</topic><topic>Low Reynolds number flow</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Numerical methods</topic><topic>Parachutes</topic><topic>Reynolds number</topic><topic>Stream functions (fluids)</topic><topic>Two dimensional models</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallen, Andreu F</creatorcontrib><creatorcontrib>Castro, Mario</creatorcontrib><creatorcontrib>Hernandez-Machado, Aurora</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallen, Andreu F</au><au>Castro, Mario</au><au>Hernandez-Machado, Aurora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions</atitle><jtitle>Soft matter</jtitle><date>2021-11-03</date><risdate>2021</risdate><volume>17</volume><issue>42</issue><spage>9587</spage><epage>9594</epage><pages>9587-9594</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Studies on the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have successfully simulated the coupling between a fluid and red blood cells. This paper introduces an alternative phase-field model formulation of two-dimensional cells that solves the vorticity and stream function that simplifies the numerical implementation. We integrate red blood cell dynamics immersed in a Poiseuille flow and reproduce previously reported morphologies (slippers or parachutes). In the case of flow in a very wide channel, we discover a new metastable shape referred to as ' anti -parachute' that evolves into a horizontal slipper centered on the channel. This sort of metastable morphology may contribute to the dynamical response of the blood. A novel model membrane modelling can be used to study red blood cells by solving the vorticity and stream function, simplifying the numerical implementation, and produce a new metastable shape for lower confinement.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1sm00559f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4555-7238</orcidid><orcidid>https://orcid.org/0000-0002-0397-5255</orcidid><orcidid>https://orcid.org/0000-0003-3288-6144</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-11, Vol.17 (42), p.9587-9594
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_D1SM00559F
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Blood
Erythrocytes
Fluid dynamics
Fluid flow
Laminar flow
Low Reynolds number flow
Mathematical models
Mechanical properties
Morphology
Numerical methods
Parachutes
Reynolds number
Stream functions (fluids)
Two dimensional models
Vorticity
title Red blood cells in low Reynolds number flow: A vorticity-based characterization of shapes in two dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Red%20blood%20cells%20in%20low%20Reynolds%20number%20flow:%20A%20vorticity-based%20characterization%20of%20shapes%20in%20two%20dimensions&rft.jtitle=Soft%20matter&rft.au=Gallen,%20Andreu%20F&rft.date=2021-11-03&rft.volume=17&rft.issue=42&rft.spage=9587&rft.epage=9594&rft.pages=9587-9594&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm00559f&rft_dat=%3Cproquest_cross%3E2582805476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592319584&rft_id=info:pmid/&rfr_iscdi=true