Machine learning for phase behavior in active matter systems
We demonstrate that deep learning techniques can be used to predict motility-induced phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at the particle level. Using a fully connected network in conjunction with a graph neural network we use indiv...
Gespeichert in:
Veröffentlicht in: | Soft matter 2021-07, Vol.17 (28), p.688-6816 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6816 |
---|---|
container_issue | 28 |
container_start_page | 688 |
container_title | Soft matter |
container_volume | 17 |
creator | Dulaney, Austin R Brady, John F |
description | We demonstrate that deep learning techniques can be used to predict motility-induced phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at the particle level. Using a fully connected network in conjunction with a graph neural network we use individual particle features to predict to which phase a particle belongs. From this, we are able to compute the fraction of dilute particles to determine if the system is in the homogeneous dilute, dense, or coexistence region. Our predictions are compared against the MIPS binodal computed from simulation. The strong agreement between the two suggests that machine learning provides an effective way to determine the phase behavior of ABPs and could prove useful for determining more complex phase diagrams.
We demonstrate that deep learning techniques can be used to predict motility-induced phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at the particle level. |
doi_str_mv | 10.1039/d1sm00266j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1SM00266J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553501842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-6ada372295c7c81e4c448cd9501e2de7e57fb5e1f292a8388e340e0298f81e433</originalsourceid><addsrcrecordid>eNpd0MtLw0AQBvBFFKzVi3dhwYsI0X1nA16kvmnxoIK3sN1MbEoedSct9L93a0XB08zAj-HjI-SYswvOZHZZcGwYE8bMd8iAp0olxiq7-7vL931ygDhnTFrFzYBcTZyfVS3QGlxoq_aDll2gi5lDoFOYuVUVz6qlzvfVCmjj-h4CxTX20OAh2StdjXD0M4fk7e72dfSQjJ_vH0fX48RLzfrEuMLJVIhM-9RbDsorZX2RacZBFJCCTsupBl6KTDgrrQWpGDCR2XKjpRySs-3fReg-l4B93lTooa5dC90Sc6GVNTwTykR6-o_Ou2VoY7qodIzDrRJRnW-VDx1igDJfhKpxYZ1zlm-KzG_4y-S7yKeIT7Y4oP91f0XLL11fbic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553501842</pqid></control><display><type>article</type><title>Machine learning for phase behavior in active matter systems</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Dulaney, Austin R ; Brady, John F</creator><creatorcontrib>Dulaney, Austin R ; Brady, John F</creatorcontrib><description>We demonstrate that deep learning techniques can be used to predict motility-induced phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at the particle level. Using a fully connected network in conjunction with a graph neural network we use individual particle features to predict to which phase a particle belongs. From this, we are able to compute the fraction of dilute particles to determine if the system is in the homogeneous dilute, dense, or coexistence region. Our predictions are compared against the MIPS binodal computed from simulation. The strong agreement between the two suggests that machine learning provides an effective way to determine the phase behavior of ABPs and could prove useful for determining more complex phase diagrams.
We demonstrate that deep learning techniques can be used to predict motility-induced phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at the particle level.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm00266j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Brownian motion ; Coexistence ; Deep learning ; Dilution ; Graph neural networks ; Learning algorithms ; Machine learning ; Neural networks ; Phase diagrams ; Phase separation</subject><ispartof>Soft matter, 2021-07, Vol.17 (28), p.688-6816</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-6ada372295c7c81e4c448cd9501e2de7e57fb5e1f292a8388e340e0298f81e433</citedby><cites>FETCH-LOGICAL-c350t-6ada372295c7c81e4c448cd9501e2de7e57fb5e1f292a8388e340e0298f81e433</cites><orcidid>0000-0002-2428-8913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dulaney, Austin R</creatorcontrib><creatorcontrib>Brady, John F</creatorcontrib><title>Machine learning for phase behavior in active matter systems</title><title>Soft matter</title><description>We demonstrate that deep learning techniques can be used to predict motility-induced phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at the particle level. Using a fully connected network in conjunction with a graph neural network we use individual particle features to predict to which phase a particle belongs. From this, we are able to compute the fraction of dilute particles to determine if the system is in the homogeneous dilute, dense, or coexistence region. Our predictions are compared against the MIPS binodal computed from simulation. The strong agreement between the two suggests that machine learning provides an effective way to determine the phase behavior of ABPs and could prove useful for determining more complex phase diagrams.
We demonstrate that deep learning techniques can be used to predict motility-induced phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at the particle level.</description><subject>Brownian motion</subject><subject>Coexistence</subject><subject>Deep learning</subject><subject>Dilution</subject><subject>Graph neural networks</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Phase diagrams</subject><subject>Phase separation</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0MtLw0AQBvBFFKzVi3dhwYsI0X1nA16kvmnxoIK3sN1MbEoedSct9L93a0XB08zAj-HjI-SYswvOZHZZcGwYE8bMd8iAp0olxiq7-7vL931ygDhnTFrFzYBcTZyfVS3QGlxoq_aDll2gi5lDoFOYuVUVz6qlzvfVCmjj-h4CxTX20OAh2StdjXD0M4fk7e72dfSQjJ_vH0fX48RLzfrEuMLJVIhM-9RbDsorZX2RacZBFJCCTsupBl6KTDgrrQWpGDCR2XKjpRySs-3fReg-l4B93lTooa5dC90Sc6GVNTwTykR6-o_Ou2VoY7qodIzDrRJRnW-VDx1igDJfhKpxYZ1zlm-KzG_4y-S7yKeIT7Y4oP91f0XLL11fbic</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Dulaney, Austin R</creator><creator>Brady, John F</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2428-8913</orcidid></search><sort><creationdate>20210721</creationdate><title>Machine learning for phase behavior in active matter systems</title><author>Dulaney, Austin R ; Brady, John F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-6ada372295c7c81e4c448cd9501e2de7e57fb5e1f292a8388e340e0298f81e433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brownian motion</topic><topic>Coexistence</topic><topic>Deep learning</topic><topic>Dilution</topic><topic>Graph neural networks</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Phase diagrams</topic><topic>Phase separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dulaney, Austin R</creatorcontrib><creatorcontrib>Brady, John F</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dulaney, Austin R</au><au>Brady, John F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for phase behavior in active matter systems</atitle><jtitle>Soft matter</jtitle><date>2021-07-21</date><risdate>2021</risdate><volume>17</volume><issue>28</issue><spage>688</spage><epage>6816</epage><pages>688-6816</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We demonstrate that deep learning techniques can be used to predict motility-induced phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at the particle level. Using a fully connected network in conjunction with a graph neural network we use individual particle features to predict to which phase a particle belongs. From this, we are able to compute the fraction of dilute particles to determine if the system is in the homogeneous dilute, dense, or coexistence region. Our predictions are compared against the MIPS binodal computed from simulation. The strong agreement between the two suggests that machine learning provides an effective way to determine the phase behavior of ABPs and could prove useful for determining more complex phase diagrams.
We demonstrate that deep learning techniques can be used to predict motility-induced phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by creating a notion of phase at the particle level.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1sm00266j</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2428-8913</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2021-07, Vol.17 (28), p.688-6816 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1SM00266J |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Brownian motion Coexistence Deep learning Dilution Graph neural networks Learning algorithms Machine learning Neural networks Phase diagrams Phase separation |
title | Machine learning for phase behavior in active matter systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20phase%20behavior%20in%20active%20matter%20systems&rft.jtitle=Soft%20matter&rft.au=Dulaney,%20Austin%20R&rft.date=2021-07-21&rft.volume=17&rft.issue=28&rft.spage=688&rft.epage=6816&rft.pages=688-6816&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm00266j&rft_dat=%3Cproquest_cross%3E2553501842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2553501842&rft_id=info:pmid/&rfr_iscdi=true |