Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease

An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2021-09, Vol.11 (48), p.327-3282
Hauptverfasser: Drera, Giovanni, Freddi, Sonia, Emelianov, Aleksei V, Bobrinetskiy, Ivan I, Chiesa, Maria, Zanotti, Michele, Pagliara, Stefania, Fedorov, Fedor S, Nasibulin, Albert G, Montuschi, Paolo, Sangaletti, Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3282
container_issue 48
container_start_page 327
container_title RSC advances
container_volume 11
creator Drera, Giovanni
Freddi, Sonia
Emelianov, Aleksei V
Bobrinetskiy, Ivan I
Chiesa, Maria
Zanotti, Michele
Pagliara, Stefania
Fedorov, Fedor S
Nasibulin, Albert G
Montuschi, Paolo
Sangaletti, Luigi
description An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH 3 ), nitrogen dioxide (NO 2 ), hydrogen sulphide (H 2 S), and benzene (C 6 H 6 ). Among them, ammonia (NH 3 ) and nitrogen dioxide (NO 2 ) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH 3 ) and nitrogen dioxide (NO 2 ), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset. Extensive application of clustering and classification algorithms shows the potential of a CNT-based sensor array in breathomics.
doi_str_mv 10.1039/d1ra03337a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1RA03337A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581179363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-2b435d9158ed02ffc25dbb8ab7aab29481b12193f1bb9031123547ed219995913</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEolXphTvIEheEFPBHvswBabW0gFSBhMo5GjuTXZfEXuykovxkfkVnd8tS8CV2_PiZN_Fk2VPBXwuu9JtOROBKqRoeZMeSF1UueaUf3psfZacpXXEaVSlkJR5nR6osGi5LeZz9Pvu5GUJ0fsWmNbINxj7EEbxFFnoGrJ-9nVzwMLhf2LHl58vcQKJZQp9CZBAj3DA6w0xEmNZhdDaRKoZ5tWZ2mNOEOzv4jpaQkuudha2SwbCiytN6TG9ZH8PIVpB23i1P1RMOSMWvkRkXRojfMZI6sM4lG93o_F5DpKV63lkWTJrivD-zmYeRcsebLY-U-Un2qIch4end8yT7dn52ufyYX3z58Gm5uMhtIZspl6ZQZadF2WDHZd9bWXbGNGBqACN10QgjpNCqF8ZoroSQ9Ddr7Oid1qUW6iR7t_duZjNiZ9FPEYZ2Q5EpTRvAtf_ueLduV-G61bwQgnMSvLwTxPBjxjS1I30xDgN4DHNqZVVWdSF5vUVf_IdehTnSbRFVNkLUWlWKqFd7ysaQUsT-EEbwdttF7XvxdbHrogXBz-_HP6B_eoaAZ3sgJnvY_duG6ha3ntPd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581179363</pqid></control><display><type>article</type><title>Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Drera, Giovanni ; Freddi, Sonia ; Emelianov, Aleksei V ; Bobrinetskiy, Ivan I ; Chiesa, Maria ; Zanotti, Michele ; Pagliara, Stefania ; Fedorov, Fedor S ; Nasibulin, Albert G ; Montuschi, Paolo ; Sangaletti, Luigi</creator><creatorcontrib>Drera, Giovanni ; Freddi, Sonia ; Emelianov, Aleksei V ; Bobrinetskiy, Ivan I ; Chiesa, Maria ; Zanotti, Michele ; Pagliara, Stefania ; Fedorov, Fedor S ; Nasibulin, Albert G ; Montuschi, Paolo ; Sangaletti, Luigi</creatorcontrib><description>An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH 3 ), nitrogen dioxide (NO 2 ), hydrogen sulphide (H 2 S), and benzene (C 6 H 6 ). Among them, ammonia (NH 3 ) and nitrogen dioxide (NO 2 ) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH 3 ) and nitrogen dioxide (NO 2 ), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset. Extensive application of clustering and classification algorithms shows the potential of a CNT-based sensor array in breathomics.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra03337a</identifier><identifier>PMID: 35480252</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Algorithms ; Ammonia ; Benzene ; Biomarkers ; Breath tests ; Carbon nanotubes ; Chemistry ; Chronic obstructive pulmonary disease ; Classification ; Clustering ; Datasets ; Discrimination ; Exposure ; Gas sensors ; Hydrogen sulfide ; Nitrogen dioxide ; Principal components analysis ; Selectivity ; Sensor arrays ; Sensors</subject><ispartof>RSC advances, 2021-09, Vol.11 (48), p.327-3282</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-2b435d9158ed02ffc25dbb8ab7aab29481b12193f1bb9031123547ed219995913</citedby><cites>FETCH-LOGICAL-c428t-2b435d9158ed02ffc25dbb8ab7aab29481b12193f1bb9031123547ed219995913</cites><orcidid>0000-0001-9312-5862 ; 0000-0002-6673-757X ; 0000-0002-5636-4212 ; 0000-0003-2966-3361 ; 0000-0002-9953-6934 ; 0000-0002-1684-3948 ; 0000-0002-5157-881X ; 0000-0002-2283-0086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041100/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041100/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35480252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drera, Giovanni</creatorcontrib><creatorcontrib>Freddi, Sonia</creatorcontrib><creatorcontrib>Emelianov, Aleksei V</creatorcontrib><creatorcontrib>Bobrinetskiy, Ivan I</creatorcontrib><creatorcontrib>Chiesa, Maria</creatorcontrib><creatorcontrib>Zanotti, Michele</creatorcontrib><creatorcontrib>Pagliara, Stefania</creatorcontrib><creatorcontrib>Fedorov, Fedor S</creatorcontrib><creatorcontrib>Nasibulin, Albert G</creatorcontrib><creatorcontrib>Montuschi, Paolo</creatorcontrib><creatorcontrib>Sangaletti, Luigi</creatorcontrib><title>Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH 3 ), nitrogen dioxide (NO 2 ), hydrogen sulphide (H 2 S), and benzene (C 6 H 6 ). Among them, ammonia (NH 3 ) and nitrogen dioxide (NO 2 ) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH 3 ) and nitrogen dioxide (NO 2 ), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset. Extensive application of clustering and classification algorithms shows the potential of a CNT-based sensor array in breathomics.</description><subject>Algorithms</subject><subject>Ammonia</subject><subject>Benzene</subject><subject>Biomarkers</subject><subject>Breath tests</subject><subject>Carbon nanotubes</subject><subject>Chemistry</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Classification</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Discrimination</subject><subject>Exposure</subject><subject>Gas sensors</subject><subject>Hydrogen sulfide</subject><subject>Nitrogen dioxide</subject><subject>Principal components analysis</subject><subject>Selectivity</subject><subject>Sensor arrays</subject><subject>Sensors</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkk1v1DAQhiMEolXphTvIEheEFPBHvswBabW0gFSBhMo5GjuTXZfEXuykovxkfkVnd8tS8CV2_PiZN_Fk2VPBXwuu9JtOROBKqRoeZMeSF1UueaUf3psfZacpXXEaVSlkJR5nR6osGi5LeZz9Pvu5GUJ0fsWmNbINxj7EEbxFFnoGrJ-9nVzwMLhf2LHl58vcQKJZQp9CZBAj3DA6w0xEmNZhdDaRKoZ5tWZ2mNOEOzv4jpaQkuudha2SwbCiytN6TG9ZH8PIVpB23i1P1RMOSMWvkRkXRojfMZI6sM4lG93o_F5DpKV63lkWTJrivD-zmYeRcsebLY-U-Un2qIch4end8yT7dn52ufyYX3z58Gm5uMhtIZspl6ZQZadF2WDHZd9bWXbGNGBqACN10QgjpNCqF8ZoroSQ9Ddr7Oid1qUW6iR7t_duZjNiZ9FPEYZ2Q5EpTRvAtf_ueLduV-G61bwQgnMSvLwTxPBjxjS1I30xDgN4DHNqZVVWdSF5vUVf_IdehTnSbRFVNkLUWlWKqFd7ysaQUsT-EEbwdttF7XvxdbHrogXBz-_HP6B_eoaAZ3sgJnvY_duG6ha3ntPd</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>Drera, Giovanni</creator><creator>Freddi, Sonia</creator><creator>Emelianov, Aleksei V</creator><creator>Bobrinetskiy, Ivan I</creator><creator>Chiesa, Maria</creator><creator>Zanotti, Michele</creator><creator>Pagliara, Stefania</creator><creator>Fedorov, Fedor S</creator><creator>Nasibulin, Albert G</creator><creator>Montuschi, Paolo</creator><creator>Sangaletti, Luigi</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9312-5862</orcidid><orcidid>https://orcid.org/0000-0002-6673-757X</orcidid><orcidid>https://orcid.org/0000-0002-5636-4212</orcidid><orcidid>https://orcid.org/0000-0003-2966-3361</orcidid><orcidid>https://orcid.org/0000-0002-9953-6934</orcidid><orcidid>https://orcid.org/0000-0002-1684-3948</orcidid><orcidid>https://orcid.org/0000-0002-5157-881X</orcidid><orcidid>https://orcid.org/0000-0002-2283-0086</orcidid></search><sort><creationdate>20210910</creationdate><title>Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease</title><author>Drera, Giovanni ; Freddi, Sonia ; Emelianov, Aleksei V ; Bobrinetskiy, Ivan I ; Chiesa, Maria ; Zanotti, Michele ; Pagliara, Stefania ; Fedorov, Fedor S ; Nasibulin, Albert G ; Montuschi, Paolo ; Sangaletti, Luigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-2b435d9158ed02ffc25dbb8ab7aab29481b12193f1bb9031123547ed219995913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Ammonia</topic><topic>Benzene</topic><topic>Biomarkers</topic><topic>Breath tests</topic><topic>Carbon nanotubes</topic><topic>Chemistry</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Classification</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Discrimination</topic><topic>Exposure</topic><topic>Gas sensors</topic><topic>Hydrogen sulfide</topic><topic>Nitrogen dioxide</topic><topic>Principal components analysis</topic><topic>Selectivity</topic><topic>Sensor arrays</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drera, Giovanni</creatorcontrib><creatorcontrib>Freddi, Sonia</creatorcontrib><creatorcontrib>Emelianov, Aleksei V</creatorcontrib><creatorcontrib>Bobrinetskiy, Ivan I</creatorcontrib><creatorcontrib>Chiesa, Maria</creatorcontrib><creatorcontrib>Zanotti, Michele</creatorcontrib><creatorcontrib>Pagliara, Stefania</creatorcontrib><creatorcontrib>Fedorov, Fedor S</creatorcontrib><creatorcontrib>Nasibulin, Albert G</creatorcontrib><creatorcontrib>Montuschi, Paolo</creatorcontrib><creatorcontrib>Sangaletti, Luigi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drera, Giovanni</au><au>Freddi, Sonia</au><au>Emelianov, Aleksei V</au><au>Bobrinetskiy, Ivan I</au><au>Chiesa, Maria</au><au>Zanotti, Michele</au><au>Pagliara, Stefania</au><au>Fedorov, Fedor S</au><au>Nasibulin, Albert G</au><au>Montuschi, Paolo</au><au>Sangaletti, Luigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2021-09-10</date><risdate>2021</risdate><volume>11</volume><issue>48</issue><spage>327</spage><epage>3282</epage><pages>327-3282</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH 3 ), nitrogen dioxide (NO 2 ), hydrogen sulphide (H 2 S), and benzene (C 6 H 6 ). Among them, ammonia (NH 3 ) and nitrogen dioxide (NO 2 ) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH 3 ) and nitrogen dioxide (NO 2 ), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset. Extensive application of clustering and classification algorithms shows the potential of a CNT-based sensor array in breathomics.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35480252</pmid><doi>10.1039/d1ra03337a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9312-5862</orcidid><orcidid>https://orcid.org/0000-0002-6673-757X</orcidid><orcidid>https://orcid.org/0000-0002-5636-4212</orcidid><orcidid>https://orcid.org/0000-0003-2966-3361</orcidid><orcidid>https://orcid.org/0000-0002-9953-6934</orcidid><orcidid>https://orcid.org/0000-0002-1684-3948</orcidid><orcidid>https://orcid.org/0000-0002-5157-881X</orcidid><orcidid>https://orcid.org/0000-0002-2283-0086</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2021-09, Vol.11 (48), p.327-3282
issn 2046-2069
2046-2069
language eng
recordid cdi_crossref_primary_10_1039_D1RA03337A
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Algorithms
Ammonia
Benzene
Biomarkers
Breath tests
Carbon nanotubes
Chemistry
Chronic obstructive pulmonary disease
Classification
Clustering
Datasets
Discrimination
Exposure
Gas sensors
Hydrogen sulfide
Nitrogen dioxide
Principal components analysis
Selectivity
Sensor arrays
Sensors
title Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20performance%20of%20a%20functionalized%20CNT-based%20sensor%20array%20for%20breathomics%20through%20clustering%20and%20classification%20algorithms:%20from%20gas%20sensing%20of%20selective%20biomarkers%20to%20discrimination%20of%20chronic%20obstructive%20pulmonary%20disease&rft.jtitle=RSC%20advances&rft.au=Drera,%20Giovanni&rft.date=2021-09-10&rft.volume=11&rft.issue=48&rft.spage=327&rft.epage=3282&rft.pages=327-3282&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra03337a&rft_dat=%3Cproquest_cross%3E2581179363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581179363&rft_id=info:pmid/35480252&rfr_iscdi=true