Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease
An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of...
Gespeichert in:
Veröffentlicht in: | RSC advances 2021-09, Vol.11 (48), p.327-3282 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3282 |
---|---|
container_issue | 48 |
container_start_page | 327 |
container_title | RSC advances |
container_volume | 11 |
creator | Drera, Giovanni Freddi, Sonia Emelianov, Aleksei V Bobrinetskiy, Ivan I Chiesa, Maria Zanotti, Michele Pagliara, Stefania Fedorov, Fedor S Nasibulin, Albert G Montuschi, Paolo Sangaletti, Luigi |
description | An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH
3
), nitrogen dioxide (NO
2
), hydrogen sulphide (H
2
S), and benzene (C
6
H
6
). Among them, ammonia (NH
3
) and nitrogen dioxide (NO
2
) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH
3
) and nitrogen dioxide (NO
2
), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset.
Extensive application of clustering and classification algorithms shows the potential of a CNT-based sensor array in breathomics. |
doi_str_mv | 10.1039/d1ra03337a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1RA03337A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581179363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-2b435d9158ed02ffc25dbb8ab7aab29481b12193f1bb9031123547ed219995913</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEolXphTvIEheEFPBHvswBabW0gFSBhMo5GjuTXZfEXuykovxkfkVnd8tS8CV2_PiZN_Fk2VPBXwuu9JtOROBKqRoeZMeSF1UueaUf3psfZacpXXEaVSlkJR5nR6osGi5LeZz9Pvu5GUJ0fsWmNbINxj7EEbxFFnoGrJ-9nVzwMLhf2LHl58vcQKJZQp9CZBAj3DA6w0xEmNZhdDaRKoZ5tWZ2mNOEOzv4jpaQkuudha2SwbCiytN6TG9ZH8PIVpB23i1P1RMOSMWvkRkXRojfMZI6sM4lG93o_F5DpKV63lkWTJrivD-zmYeRcsebLY-U-Un2qIch4end8yT7dn52ufyYX3z58Gm5uMhtIZspl6ZQZadF2WDHZd9bWXbGNGBqACN10QgjpNCqF8ZoroSQ9Ddr7Oid1qUW6iR7t_duZjNiZ9FPEYZ2Q5EpTRvAtf_ueLduV-G61bwQgnMSvLwTxPBjxjS1I30xDgN4DHNqZVVWdSF5vUVf_IdehTnSbRFVNkLUWlWKqFd7ysaQUsT-EEbwdttF7XvxdbHrogXBz-_HP6B_eoaAZ3sgJnvY_duG6ha3ntPd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2581179363</pqid></control><display><type>article</type><title>Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Drera, Giovanni ; Freddi, Sonia ; Emelianov, Aleksei V ; Bobrinetskiy, Ivan I ; Chiesa, Maria ; Zanotti, Michele ; Pagliara, Stefania ; Fedorov, Fedor S ; Nasibulin, Albert G ; Montuschi, Paolo ; Sangaletti, Luigi</creator><creatorcontrib>Drera, Giovanni ; Freddi, Sonia ; Emelianov, Aleksei V ; Bobrinetskiy, Ivan I ; Chiesa, Maria ; Zanotti, Michele ; Pagliara, Stefania ; Fedorov, Fedor S ; Nasibulin, Albert G ; Montuschi, Paolo ; Sangaletti, Luigi</creatorcontrib><description>An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH
3
), nitrogen dioxide (NO
2
), hydrogen sulphide (H
2
S), and benzene (C
6
H
6
). Among them, ammonia (NH
3
) and nitrogen dioxide (NO
2
) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH
3
) and nitrogen dioxide (NO
2
), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset.
Extensive application of clustering and classification algorithms shows the potential of a CNT-based sensor array in breathomics.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d1ra03337a</identifier><identifier>PMID: 35480252</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Algorithms ; Ammonia ; Benzene ; Biomarkers ; Breath tests ; Carbon nanotubes ; Chemistry ; Chronic obstructive pulmonary disease ; Classification ; Clustering ; Datasets ; Discrimination ; Exposure ; Gas sensors ; Hydrogen sulfide ; Nitrogen dioxide ; Principal components analysis ; Selectivity ; Sensor arrays ; Sensors</subject><ispartof>RSC advances, 2021-09, Vol.11 (48), p.327-3282</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2021</rights><rights>This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-2b435d9158ed02ffc25dbb8ab7aab29481b12193f1bb9031123547ed219995913</citedby><cites>FETCH-LOGICAL-c428t-2b435d9158ed02ffc25dbb8ab7aab29481b12193f1bb9031123547ed219995913</cites><orcidid>0000-0001-9312-5862 ; 0000-0002-6673-757X ; 0000-0002-5636-4212 ; 0000-0003-2966-3361 ; 0000-0002-9953-6934 ; 0000-0002-1684-3948 ; 0000-0002-5157-881X ; 0000-0002-2283-0086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041100/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041100/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35480252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drera, Giovanni</creatorcontrib><creatorcontrib>Freddi, Sonia</creatorcontrib><creatorcontrib>Emelianov, Aleksei V</creatorcontrib><creatorcontrib>Bobrinetskiy, Ivan I</creatorcontrib><creatorcontrib>Chiesa, Maria</creatorcontrib><creatorcontrib>Zanotti, Michele</creatorcontrib><creatorcontrib>Pagliara, Stefania</creatorcontrib><creatorcontrib>Fedorov, Fedor S</creatorcontrib><creatorcontrib>Nasibulin, Albert G</creatorcontrib><creatorcontrib>Montuschi, Paolo</creatorcontrib><creatorcontrib>Sangaletti, Luigi</creatorcontrib><title>Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH
3
), nitrogen dioxide (NO
2
), hydrogen sulphide (H
2
S), and benzene (C
6
H
6
). Among them, ammonia (NH
3
) and nitrogen dioxide (NO
2
) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH
3
) and nitrogen dioxide (NO
2
), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset.
Extensive application of clustering and classification algorithms shows the potential of a CNT-based sensor array in breathomics.</description><subject>Algorithms</subject><subject>Ammonia</subject><subject>Benzene</subject><subject>Biomarkers</subject><subject>Breath tests</subject><subject>Carbon nanotubes</subject><subject>Chemistry</subject><subject>Chronic obstructive pulmonary disease</subject><subject>Classification</subject><subject>Clustering</subject><subject>Datasets</subject><subject>Discrimination</subject><subject>Exposure</subject><subject>Gas sensors</subject><subject>Hydrogen sulfide</subject><subject>Nitrogen dioxide</subject><subject>Principal components analysis</subject><subject>Selectivity</subject><subject>Sensor arrays</subject><subject>Sensors</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkk1v1DAQhiMEolXphTvIEheEFPBHvswBabW0gFSBhMo5GjuTXZfEXuykovxkfkVnd8tS8CV2_PiZN_Fk2VPBXwuu9JtOROBKqRoeZMeSF1UueaUf3psfZacpXXEaVSlkJR5nR6osGi5LeZz9Pvu5GUJ0fsWmNbINxj7EEbxFFnoGrJ-9nVzwMLhf2LHl58vcQKJZQp9CZBAj3DA6w0xEmNZhdDaRKoZ5tWZ2mNOEOzv4jpaQkuudha2SwbCiytN6TG9ZH8PIVpB23i1P1RMOSMWvkRkXRojfMZI6sM4lG93o_F5DpKV63lkWTJrivD-zmYeRcsebLY-U-Un2qIch4end8yT7dn52ufyYX3z58Gm5uMhtIZspl6ZQZadF2WDHZd9bWXbGNGBqACN10QgjpNCqF8ZoroSQ9Ddr7Oid1qUW6iR7t_duZjNiZ9FPEYZ2Q5EpTRvAtf_ueLduV-G61bwQgnMSvLwTxPBjxjS1I30xDgN4DHNqZVVWdSF5vUVf_IdehTnSbRFVNkLUWlWKqFd7ysaQUsT-EEbwdttF7XvxdbHrogXBz-_HP6B_eoaAZ3sgJnvY_duG6ha3ntPd</recordid><startdate>20210910</startdate><enddate>20210910</enddate><creator>Drera, Giovanni</creator><creator>Freddi, Sonia</creator><creator>Emelianov, Aleksei V</creator><creator>Bobrinetskiy, Ivan I</creator><creator>Chiesa, Maria</creator><creator>Zanotti, Michele</creator><creator>Pagliara, Stefania</creator><creator>Fedorov, Fedor S</creator><creator>Nasibulin, Albert G</creator><creator>Montuschi, Paolo</creator><creator>Sangaletti, Luigi</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9312-5862</orcidid><orcidid>https://orcid.org/0000-0002-6673-757X</orcidid><orcidid>https://orcid.org/0000-0002-5636-4212</orcidid><orcidid>https://orcid.org/0000-0003-2966-3361</orcidid><orcidid>https://orcid.org/0000-0002-9953-6934</orcidid><orcidid>https://orcid.org/0000-0002-1684-3948</orcidid><orcidid>https://orcid.org/0000-0002-5157-881X</orcidid><orcidid>https://orcid.org/0000-0002-2283-0086</orcidid></search><sort><creationdate>20210910</creationdate><title>Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease</title><author>Drera, Giovanni ; Freddi, Sonia ; Emelianov, Aleksei V ; Bobrinetskiy, Ivan I ; Chiesa, Maria ; Zanotti, Michele ; Pagliara, Stefania ; Fedorov, Fedor S ; Nasibulin, Albert G ; Montuschi, Paolo ; Sangaletti, Luigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-2b435d9158ed02ffc25dbb8ab7aab29481b12193f1bb9031123547ed219995913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Ammonia</topic><topic>Benzene</topic><topic>Biomarkers</topic><topic>Breath tests</topic><topic>Carbon nanotubes</topic><topic>Chemistry</topic><topic>Chronic obstructive pulmonary disease</topic><topic>Classification</topic><topic>Clustering</topic><topic>Datasets</topic><topic>Discrimination</topic><topic>Exposure</topic><topic>Gas sensors</topic><topic>Hydrogen sulfide</topic><topic>Nitrogen dioxide</topic><topic>Principal components analysis</topic><topic>Selectivity</topic><topic>Sensor arrays</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drera, Giovanni</creatorcontrib><creatorcontrib>Freddi, Sonia</creatorcontrib><creatorcontrib>Emelianov, Aleksei V</creatorcontrib><creatorcontrib>Bobrinetskiy, Ivan I</creatorcontrib><creatorcontrib>Chiesa, Maria</creatorcontrib><creatorcontrib>Zanotti, Michele</creatorcontrib><creatorcontrib>Pagliara, Stefania</creatorcontrib><creatorcontrib>Fedorov, Fedor S</creatorcontrib><creatorcontrib>Nasibulin, Albert G</creatorcontrib><creatorcontrib>Montuschi, Paolo</creatorcontrib><creatorcontrib>Sangaletti, Luigi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drera, Giovanni</au><au>Freddi, Sonia</au><au>Emelianov, Aleksei V</au><au>Bobrinetskiy, Ivan I</au><au>Chiesa, Maria</au><au>Zanotti, Michele</au><au>Pagliara, Stefania</au><au>Fedorov, Fedor S</au><au>Nasibulin, Albert G</au><au>Montuschi, Paolo</au><au>Sangaletti, Luigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2021-09-10</date><risdate>2021</risdate><volume>11</volume><issue>48</issue><spage>327</spage><epage>3282</epage><pages>327-3282</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH
3
), nitrogen dioxide (NO
2
), hydrogen sulphide (H
2
S), and benzene (C
6
H
6
). Among them, ammonia (NH
3
) and nitrogen dioxide (NO
2
) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH
3
) and nitrogen dioxide (NO
2
), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset.
Extensive application of clustering and classification algorithms shows the potential of a CNT-based sensor array in breathomics.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35480252</pmid><doi>10.1039/d1ra03337a</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9312-5862</orcidid><orcidid>https://orcid.org/0000-0002-6673-757X</orcidid><orcidid>https://orcid.org/0000-0002-5636-4212</orcidid><orcidid>https://orcid.org/0000-0003-2966-3361</orcidid><orcidid>https://orcid.org/0000-0002-9953-6934</orcidid><orcidid>https://orcid.org/0000-0002-1684-3948</orcidid><orcidid>https://orcid.org/0000-0002-5157-881X</orcidid><orcidid>https://orcid.org/0000-0002-2283-0086</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2021-09, Vol.11 (48), p.327-3282 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1RA03337A |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Algorithms Ammonia Benzene Biomarkers Breath tests Carbon nanotubes Chemistry Chronic obstructive pulmonary disease Classification Clustering Datasets Discrimination Exposure Gas sensors Hydrogen sulfide Nitrogen dioxide Principal components analysis Selectivity Sensor arrays Sensors |
title | Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20performance%20of%20a%20functionalized%20CNT-based%20sensor%20array%20for%20breathomics%20through%20clustering%20and%20classification%20algorithms:%20from%20gas%20sensing%20of%20selective%20biomarkers%20to%20discrimination%20of%20chronic%20obstructive%20pulmonary%20disease&rft.jtitle=RSC%20advances&rft.au=Drera,%20Giovanni&rft.date=2021-09-10&rft.volume=11&rft.issue=48&rft.spage=327&rft.epage=3282&rft.pages=327-3282&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d1ra03337a&rft_dat=%3Cproquest_cross%3E2581179363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2581179363&rft_id=info:pmid/35480252&rfr_iscdi=true |