Comment on "Realization of the Zn 3+ oxidation state" by H. Fang, H. Banjade, Deepika and P. Jena, Nanoscale , 2021, 13 , 14041-14048

Two zinc-boron clusters (ZnBeB (CN) and ZnBeB (CN) ) reported in a theoretical study by P. Jena and co-workers are reinvestigated using quantum chemistry calculations. The results prove that the zinc atoms in these two clusters retain a normal oxidation state of +2, overturning the conclusion reache...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2022-06, Vol.14 (24), p.8875-8880
Hauptverfasser: Shang, Yunlong, Shu, Na, Zhang, Zhoujie, Yang, Pu, Xu, Jiawei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8880
container_issue 24
container_start_page 8875
container_title Nanoscale
container_volume 14
creator Shang, Yunlong
Shu, Na
Zhang, Zhoujie
Yang, Pu
Xu, Jiawei
description Two zinc-boron clusters (ZnBeB (CN) and ZnBeB (CN) ) reported in a theoretical study by P. Jena and co-workers are reinvestigated using quantum chemistry calculations. The results prove that the zinc atoms in these two clusters retain a normal oxidation state of +2, overturning the conclusion reached in the previous study that a +3 oxidation state is present. The semi-empirical LOBA method points out this contrast, which is demonstrated various wavefunction analysis approaches. No unpaired electrons are observed on zinc atoms nor is there a spin density difference distribution, revealing that the zinc atoms have a fully occupied 3d electron shell. Density of states studies give the same conclusion, and they further show that zinc atoms adopt an sp -hybrid type during bonding. From the perspective of energy, we advise that the electron affinity energy is not a reliable way of evaluating the oxidation state. Instead, binding energy calculations and constrained DFT are applicable, and these also support the presence of Zn . The simulated XPS peaks are consistent with the experimental data for Zn(II) measured in ZnS. Lastly, the ETS-NOCV method is adopted to give insights into the bonding structures between zinc atoms and boron clusters. It is suggested that future theoretical research into similar problems is analyzed more cautiously to avoid potentially misleading other researchers.
doi_str_mv 10.1039/d1nr07031b
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1NR07031B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35678340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c990-8bbcf5cccba8bc7bad80ce170e3f1bd1e0d6d22ac7cd47b82f7cd251515193403</originalsourceid><addsrcrecordid>eNo9kEtPwlAQhW-MRhTd-APMhKW2OLe39LEUENEQNISVm2buo1qkt6Stibj3f9uKkklmvpmcnGQOYxcc-xxFfKO5LTFEweUBO_HQR1eI0Dvcc-B32GlVrRCDWATimHXEIAgj4eMJ-x4VeW5sDYWF3sLQOvuiOmuWIoX6zcCLBXENxWemd-eqptr0QG5h2ocJ2VenhSHZFWnjwNiYTfZOQFbDcx8ejSUH5mSLStHagAMeetwBLhrkPvrcbXt0xo5SWlfm_G922XJytxxN3dnT_cPoduaqOEY3klKlA6WUpEiqUJKOUBkeohEpl5ob1IH2PFKh0n4oIy9twBvwtuLmW9FlVztbVRZVVZo02ZRZTuU24Zi0USZjPl_8RjlsxJc78eZD5kbvpf_ZiR_hYGkD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comment on "Realization of the Zn 3+ oxidation state" by H. Fang, H. Banjade, Deepika and P. Jena, Nanoscale , 2021, 13 , 14041-14048</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shang, Yunlong ; Shu, Na ; Zhang, Zhoujie ; Yang, Pu ; Xu, Jiawei</creator><creatorcontrib>Shang, Yunlong ; Shu, Na ; Zhang, Zhoujie ; Yang, Pu ; Xu, Jiawei</creatorcontrib><description>Two zinc-boron clusters (ZnBeB (CN) and ZnBeB (CN) ) reported in a theoretical study by P. Jena and co-workers are reinvestigated using quantum chemistry calculations. The results prove that the zinc atoms in these two clusters retain a normal oxidation state of +2, overturning the conclusion reached in the previous study that a +3 oxidation state is present. The semi-empirical LOBA method points out this contrast, which is demonstrated various wavefunction analysis approaches. No unpaired electrons are observed on zinc atoms nor is there a spin density difference distribution, revealing that the zinc atoms have a fully occupied 3d electron shell. Density of states studies give the same conclusion, and they further show that zinc atoms adopt an sp -hybrid type during bonding. From the perspective of energy, we advise that the electron affinity energy is not a reliable way of evaluating the oxidation state. Instead, binding energy calculations and constrained DFT are applicable, and these also support the presence of Zn . The simulated XPS peaks are consistent with the experimental data for Zn(II) measured in ZnS. Lastly, the ETS-NOCV method is adopted to give insights into the bonding structures between zinc atoms and boron clusters. It is suggested that future theoretical research into similar problems is analyzed more cautiously to avoid potentially misleading other researchers.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr07031b</identifier><identifier>PMID: 35678340</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanoscale, 2022-06, Vol.14 (24), p.8875-8880</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c990-8bbcf5cccba8bc7bad80ce170e3f1bd1e0d6d22ac7cd47b82f7cd251515193403</citedby><cites>FETCH-LOGICAL-c990-8bbcf5cccba8bc7bad80ce170e3f1bd1e0d6d22ac7cd47b82f7cd251515193403</cites><orcidid>0000-0002-2732-086X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35678340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shang, Yunlong</creatorcontrib><creatorcontrib>Shu, Na</creatorcontrib><creatorcontrib>Zhang, Zhoujie</creatorcontrib><creatorcontrib>Yang, Pu</creatorcontrib><creatorcontrib>Xu, Jiawei</creatorcontrib><title>Comment on "Realization of the Zn 3+ oxidation state" by H. Fang, H. Banjade, Deepika and P. Jena, Nanoscale , 2021, 13 , 14041-14048</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Two zinc-boron clusters (ZnBeB (CN) and ZnBeB (CN) ) reported in a theoretical study by P. Jena and co-workers are reinvestigated using quantum chemistry calculations. The results prove that the zinc atoms in these two clusters retain a normal oxidation state of +2, overturning the conclusion reached in the previous study that a +3 oxidation state is present. The semi-empirical LOBA method points out this contrast, which is demonstrated various wavefunction analysis approaches. No unpaired electrons are observed on zinc atoms nor is there a spin density difference distribution, revealing that the zinc atoms have a fully occupied 3d electron shell. Density of states studies give the same conclusion, and they further show that zinc atoms adopt an sp -hybrid type during bonding. From the perspective of energy, we advise that the electron affinity energy is not a reliable way of evaluating the oxidation state. Instead, binding energy calculations and constrained DFT are applicable, and these also support the presence of Zn . The simulated XPS peaks are consistent with the experimental data for Zn(II) measured in ZnS. Lastly, the ETS-NOCV method is adopted to give insights into the bonding structures between zinc atoms and boron clusters. It is suggested that future theoretical research into similar problems is analyzed more cautiously to avoid potentially misleading other researchers.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwlAQhW-MRhTd-APMhKW2OLe39LEUENEQNISVm2buo1qkt6Stibj3f9uKkklmvpmcnGQOYxcc-xxFfKO5LTFEweUBO_HQR1eI0Dvcc-B32GlVrRCDWATimHXEIAgj4eMJ-x4VeW5sDYWF3sLQOvuiOmuWIoX6zcCLBXENxWemd-eqptr0QG5h2ocJ2VenhSHZFWnjwNiYTfZOQFbDcx8ejSUH5mSLStHagAMeetwBLhrkPvrcbXt0xo5SWlfm_G922XJytxxN3dnT_cPoduaqOEY3klKlA6WUpEiqUJKOUBkeohEpl5ob1IH2PFKh0n4oIy9twBvwtuLmW9FlVztbVRZVVZo02ZRZTuU24Zi0USZjPl_8RjlsxJc78eZD5kbvpf_ZiR_hYGkD</recordid><startdate>20220623</startdate><enddate>20220623</enddate><creator>Shang, Yunlong</creator><creator>Shu, Na</creator><creator>Zhang, Zhoujie</creator><creator>Yang, Pu</creator><creator>Xu, Jiawei</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2732-086X</orcidid></search><sort><creationdate>20220623</creationdate><title>Comment on "Realization of the Zn 3+ oxidation state" by H. Fang, H. Banjade, Deepika and P. Jena, Nanoscale , 2021, 13 , 14041-14048</title><author>Shang, Yunlong ; Shu, Na ; Zhang, Zhoujie ; Yang, Pu ; Xu, Jiawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c990-8bbcf5cccba8bc7bad80ce170e3f1bd1e0d6d22ac7cd47b82f7cd251515193403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Yunlong</creatorcontrib><creatorcontrib>Shu, Na</creatorcontrib><creatorcontrib>Zhang, Zhoujie</creatorcontrib><creatorcontrib>Yang, Pu</creatorcontrib><creatorcontrib>Xu, Jiawei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Yunlong</au><au>Shu, Na</au><au>Zhang, Zhoujie</au><au>Yang, Pu</au><au>Xu, Jiawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comment on "Realization of the Zn 3+ oxidation state" by H. Fang, H. Banjade, Deepika and P. Jena, Nanoscale , 2021, 13 , 14041-14048</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2022-06-23</date><risdate>2022</risdate><volume>14</volume><issue>24</issue><spage>8875</spage><epage>8880</epage><pages>8875-8880</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Two zinc-boron clusters (ZnBeB (CN) and ZnBeB (CN) ) reported in a theoretical study by P. Jena and co-workers are reinvestigated using quantum chemistry calculations. The results prove that the zinc atoms in these two clusters retain a normal oxidation state of +2, overturning the conclusion reached in the previous study that a +3 oxidation state is present. The semi-empirical LOBA method points out this contrast, which is demonstrated various wavefunction analysis approaches. No unpaired electrons are observed on zinc atoms nor is there a spin density difference distribution, revealing that the zinc atoms have a fully occupied 3d electron shell. Density of states studies give the same conclusion, and they further show that zinc atoms adopt an sp -hybrid type during bonding. From the perspective of energy, we advise that the electron affinity energy is not a reliable way of evaluating the oxidation state. Instead, binding energy calculations and constrained DFT are applicable, and these also support the presence of Zn . The simulated XPS peaks are consistent with the experimental data for Zn(II) measured in ZnS. Lastly, the ETS-NOCV method is adopted to give insights into the bonding structures between zinc atoms and boron clusters. It is suggested that future theoretical research into similar problems is analyzed more cautiously to avoid potentially misleading other researchers.</abstract><cop>England</cop><pmid>35678340</pmid><doi>10.1039/d1nr07031b</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2732-086X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2022-06, Vol.14 (24), p.8875-8880
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_D1NR07031B
source Royal Society Of Chemistry Journals 2008-
title Comment on "Realization of the Zn 3+ oxidation state" by H. Fang, H. Banjade, Deepika and P. Jena, Nanoscale , 2021, 13 , 14041-14048
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comment%20on%20%22Realization%20of%20the%20Zn%203+%20oxidation%20state%22%20by%20H.%20Fang,%20H.%20Banjade,%20Deepika%20and%20P.%20Jena,%20Nanoscale%20,%202021,%2013%20,%2014041-14048&rft.jtitle=Nanoscale&rft.au=Shang,%20Yunlong&rft.date=2022-06-23&rft.volume=14&rft.issue=24&rft.spage=8875&rft.epage=8880&rft.pages=8875-8880&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr07031b&rft_dat=%3Cpubmed_cross%3E35678340%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35678340&rfr_iscdi=true