Glancing angle deposition of large-scale helical Si@Cu 3 Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries
Silicon (Si) anode materials have attracted substantial interest due to their high theoretical capacity. Here, the growth of helical Si@Cu 3 Si nanorod arrays via glancing angle deposition (GLAD) followed by an annealing process is reported. Pre-deposited Cu atoms were driven into Si-nanorods and su...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-11, Vol.13 (44), p.18626-18631 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18631 |
---|---|
container_issue | 44 |
container_start_page | 18626 |
container_title | Nanoscale |
container_volume | 13 |
creator | Wang, Hsiao-Chien Hsu, Chih-Ming Gu, Bingni Chung, Chia-Chen Wu, Shu-Chi Ilango, P. Robert Huang, Jian-Shiou Yen, Wen-Chun Chueh, Yu-Lun |
description | Silicon (Si) anode materials have attracted substantial interest due to their high theoretical capacity. Here, the growth of helical Si@Cu
3
Si nanorod arrays
via
glancing angle deposition (GLAD) followed by an annealing process is reported. Pre-deposited Cu atoms were driven into Si-nanorods and successfully reacted with Si to form a Si–Cu alloy at a high temperature. By varying the rotation rate and annealing temperature, the resultant Si@Cu
3
Si nanorod arrays showed a reasonably accessible surface area with precise control spacing behavior in favor of accommodating Si volume expansion. Meanwhile, the Si@Cu
3
Si anode materials showed higher electrical conductivity, facilitating Li
+
ion diffusion and electron transfer. The Si@Cu
3
Si nanorod arrays in half cells exhibited a volumetric capacity as high as 3350.1 mA h cm
−3
at a rate of 0.25 C and could maintain 1706.7 mA h cm
−3
after 100 cycles, which are superior to those of pristine Si materials. This facile and innovative technology provided new insights into the development of Si-based electrode materials. |
doi_str_mv | 10.1039/D1NR05297G |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1NR05297G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D1NR05297G</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76G-77a7fe78dbcadf193a93ddf36f2a699ed4d43b93959fdd4241be0b96795031cb3</originalsourceid><addsrcrecordid>eNpFkMFKxDAURYMoOI5u_IKshWja12nMThm1CoOCzr68Ni9tpJMMybjwC_xtMyi6ugcunAuXsfNCXhYS9NVd8fwqF6VWzQGblbKSAkCVh39cV8fsJKV3KWsNNczYVzOh750fOPphIm5oG5LbueB5sHzCOJBIPeZmpMll4G_uZvnBISf36EMMhmOM-Jm4DZGPbhjFlmLmTRZT1gZDiTvPI_Xj3oddtq2c2G90uNtRdJRO2ZHFKdHZb87Z-uF-vXwUq5fmaXm7Er2qG6EUKkvq2nQ9GltoQA3GWKhtibXWZCpTQadBL7Q1piqroiPZ6VrphYSi72DOLn60fQwpRbLtNroNxs-2kO3-wfb_QfgGtgxlvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glancing angle deposition of large-scale helical Si@Cu 3 Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Hsiao-Chien ; Hsu, Chih-Ming ; Gu, Bingni ; Chung, Chia-Chen ; Wu, Shu-Chi ; Ilango, P. Robert ; Huang, Jian-Shiou ; Yen, Wen-Chun ; Chueh, Yu-Lun</creator><creatorcontrib>Wang, Hsiao-Chien ; Hsu, Chih-Ming ; Gu, Bingni ; Chung, Chia-Chen ; Wu, Shu-Chi ; Ilango, P. Robert ; Huang, Jian-Shiou ; Yen, Wen-Chun ; Chueh, Yu-Lun</creatorcontrib><description>Silicon (Si) anode materials have attracted substantial interest due to their high theoretical capacity. Here, the growth of helical Si@Cu
3
Si nanorod arrays
via
glancing angle deposition (GLAD) followed by an annealing process is reported. Pre-deposited Cu atoms were driven into Si-nanorods and successfully reacted with Si to form a Si–Cu alloy at a high temperature. By varying the rotation rate and annealing temperature, the resultant Si@Cu
3
Si nanorod arrays showed a reasonably accessible surface area with precise control spacing behavior in favor of accommodating Si volume expansion. Meanwhile, the Si@Cu
3
Si anode materials showed higher electrical conductivity, facilitating Li
+
ion diffusion and electron transfer. The Si@Cu
3
Si nanorod arrays in half cells exhibited a volumetric capacity as high as 3350.1 mA h cm
−3
at a rate of 0.25 C and could maintain 1706.7 mA h cm
−3
after 100 cycles, which are superior to those of pristine Si materials. This facile and innovative technology provided new insights into the development of Si-based electrode materials.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/D1NR05297G</identifier><language>eng</language><ispartof>Nanoscale, 2021-11, Vol.13 (44), p.18626-18631</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76G-77a7fe78dbcadf193a93ddf36f2a699ed4d43b93959fdd4241be0b96795031cb3</citedby><cites>FETCH-LOGICAL-c76G-77a7fe78dbcadf193a93ddf36f2a699ed4d43b93959fdd4241be0b96795031cb3</cites><orcidid>0000-0002-0155-9987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Hsiao-Chien</creatorcontrib><creatorcontrib>Hsu, Chih-Ming</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Chung, Chia-Chen</creatorcontrib><creatorcontrib>Wu, Shu-Chi</creatorcontrib><creatorcontrib>Ilango, P. Robert</creatorcontrib><creatorcontrib>Huang, Jian-Shiou</creatorcontrib><creatorcontrib>Yen, Wen-Chun</creatorcontrib><creatorcontrib>Chueh, Yu-Lun</creatorcontrib><title>Glancing angle deposition of large-scale helical Si@Cu 3 Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries</title><title>Nanoscale</title><description>Silicon (Si) anode materials have attracted substantial interest due to their high theoretical capacity. Here, the growth of helical Si@Cu
3
Si nanorod arrays
via
glancing angle deposition (GLAD) followed by an annealing process is reported. Pre-deposited Cu atoms were driven into Si-nanorods and successfully reacted with Si to form a Si–Cu alloy at a high temperature. By varying the rotation rate and annealing temperature, the resultant Si@Cu
3
Si nanorod arrays showed a reasonably accessible surface area with precise control spacing behavior in favor of accommodating Si volume expansion. Meanwhile, the Si@Cu
3
Si anode materials showed higher electrical conductivity, facilitating Li
+
ion diffusion and electron transfer. The Si@Cu
3
Si nanorod arrays in half cells exhibited a volumetric capacity as high as 3350.1 mA h cm
−3
at a rate of 0.25 C and could maintain 1706.7 mA h cm
−3
after 100 cycles, which are superior to those of pristine Si materials. This facile and innovative technology provided new insights into the development of Si-based electrode materials.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKxDAURYMoOI5u_IKshWja12nMThm1CoOCzr68Ni9tpJMMybjwC_xtMyi6ugcunAuXsfNCXhYS9NVd8fwqF6VWzQGblbKSAkCVh39cV8fsJKV3KWsNNczYVzOh750fOPphIm5oG5LbueB5sHzCOJBIPeZmpMll4G_uZvnBISf36EMMhmOM-Jm4DZGPbhjFlmLmTRZT1gZDiTvPI_Xj3oddtq2c2G90uNtRdJRO2ZHFKdHZb87Z-uF-vXwUq5fmaXm7Er2qG6EUKkvq2nQ9GltoQA3GWKhtibXWZCpTQadBL7Q1piqroiPZ6VrphYSi72DOLn60fQwpRbLtNroNxs-2kO3-wfb_QfgGtgxlvg</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Wang, Hsiao-Chien</creator><creator>Hsu, Chih-Ming</creator><creator>Gu, Bingni</creator><creator>Chung, Chia-Chen</creator><creator>Wu, Shu-Chi</creator><creator>Ilango, P. Robert</creator><creator>Huang, Jian-Shiou</creator><creator>Yen, Wen-Chun</creator><creator>Chueh, Yu-Lun</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0155-9987</orcidid></search><sort><creationdate>20211118</creationdate><title>Glancing angle deposition of large-scale helical Si@Cu 3 Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries</title><author>Wang, Hsiao-Chien ; Hsu, Chih-Ming ; Gu, Bingni ; Chung, Chia-Chen ; Wu, Shu-Chi ; Ilango, P. Robert ; Huang, Jian-Shiou ; Yen, Wen-Chun ; Chueh, Yu-Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76G-77a7fe78dbcadf193a93ddf36f2a699ed4d43b93959fdd4241be0b96795031cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hsiao-Chien</creatorcontrib><creatorcontrib>Hsu, Chih-Ming</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Chung, Chia-Chen</creatorcontrib><creatorcontrib>Wu, Shu-Chi</creatorcontrib><creatorcontrib>Ilango, P. Robert</creatorcontrib><creatorcontrib>Huang, Jian-Shiou</creatorcontrib><creatorcontrib>Yen, Wen-Chun</creatorcontrib><creatorcontrib>Chueh, Yu-Lun</creatorcontrib><collection>CrossRef</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hsiao-Chien</au><au>Hsu, Chih-Ming</au><au>Gu, Bingni</au><au>Chung, Chia-Chen</au><au>Wu, Shu-Chi</au><au>Ilango, P. Robert</au><au>Huang, Jian-Shiou</au><au>Yen, Wen-Chun</au><au>Chueh, Yu-Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glancing angle deposition of large-scale helical Si@Cu 3 Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries</atitle><jtitle>Nanoscale</jtitle><date>2021-11-18</date><risdate>2021</risdate><volume>13</volume><issue>44</issue><spage>18626</spage><epage>18631</epage><pages>18626-18631</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Silicon (Si) anode materials have attracted substantial interest due to their high theoretical capacity. Here, the growth of helical Si@Cu
3
Si nanorod arrays
via
glancing angle deposition (GLAD) followed by an annealing process is reported. Pre-deposited Cu atoms were driven into Si-nanorods and successfully reacted with Si to form a Si–Cu alloy at a high temperature. By varying the rotation rate and annealing temperature, the resultant Si@Cu
3
Si nanorod arrays showed a reasonably accessible surface area with precise control spacing behavior in favor of accommodating Si volume expansion. Meanwhile, the Si@Cu
3
Si anode materials showed higher electrical conductivity, facilitating Li
+
ion diffusion and electron transfer. The Si@Cu
3
Si nanorod arrays in half cells exhibited a volumetric capacity as high as 3350.1 mA h cm
−3
at a rate of 0.25 C and could maintain 1706.7 mA h cm
−3
after 100 cycles, which are superior to those of pristine Si materials. This facile and innovative technology provided new insights into the development of Si-based electrode materials.</abstract><doi>10.1039/D1NR05297G</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0155-9987</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-11, Vol.13 (44), p.18626-18631 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1NR05297G |
source | Royal Society Of Chemistry Journals 2008- |
title | Glancing angle deposition of large-scale helical Si@Cu 3 Si nanorod arrays for high-performance anodes in rechargeable Li-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glancing%20angle%20deposition%20of%20large-scale%20helical%20Si@Cu%203%20Si%20nanorod%20arrays%20for%20high-performance%20anodes%20in%20rechargeable%20Li-ion%20batteries&rft.jtitle=Nanoscale&rft.au=Wang,%20Hsiao-Chien&rft.date=2021-11-18&rft.volume=13&rft.issue=44&rft.spage=18626&rft.epage=18631&rft.pages=18626-18631&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/D1NR05297G&rft_dat=%3Ccrossref%3E10_1039_D1NR05297G%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |