Variation of interaction zone size for the target design of 2D supramolecular networks

In this study, we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. We have found that such molecules are able to form a variety of structures, depending on the parameters of the employed model. In particular, it has been demo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular systems design & engineering 2021-10, Vol.6 (1), p.85-816
Hauptverfasser: Baran, ukasz, R ysko, Wojciech, Tarasewicz, Dariusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816
container_issue 1
container_start_page 85
container_title Molecular systems design & engineering
container_volume 6
creator Baran, ukasz
R ysko, Wojciech
Tarasewicz, Dariusz
description In this study, we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. We have found that such molecules are able to form a variety of structures, depending on the parameters of the employed model. In particular, it has been demonstrated that even slight changes of the interaction zone and the shape of molecules can drastically alter the behavior of investigated systems. We have established the rules governing the formation of the Sierpinski triangles, Archimedean tessellation, Kagomé, and ladder networks. The appearance of Sierpinski triangles is rather surprising, since a majority of papers report the formation of such structures in completely different systems. The only general rule that has been established and proved experimentally is that the so-called "V-shape" molecules are able to order into Sierpinski triangles. In this study, we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. It has been shown that they can form multiple ordered networks, including Sierpinski triangles.
doi_str_mv 10.1039/d1me00068c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1ME00068C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578675142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-48f5b4d1b1f79c34d59b0d2b26ed57f241b656d03da9646a2230469fd6622c53</originalsourceid><addsrcrecordid>eNpN0MtLw0AQBvBFFCy1F-_Cgjchuu8kR-lDhYqX0mvY7KOmttk6u0HsX29sRT3NDPz4Bj6ELim5pYSXd5ZuHSFEFeYEDRiRRVaqojz9t5-jUYzr3lBVKCbVAC2XGhqdmtDi4HHTJgfaHM59aB2Ozd5hHwCnV4eThpVL2LrYrA6cTXDsdqC3YeNMt9GAW5c-ArzFC3Tm9Sa60c8cosVsuhg_ZvOXh6fx_TwznOYpE4WXtbC0pj4vDRdWljWxrGbKWZl7JmitpLKEW10qoTRjnAhVeqsUY0byIbo-xu4gvHcupmodOmj7jxWTeaFySQXr1c1RGQgxgvPVDpqths-Kkuq7uWpCn6eH5sY9vjpiiObX_TXLvwA7pWoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578675142</pqid></control><display><type>article</type><title>Variation of interaction zone size for the target design of 2D supramolecular networks</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Baran, ukasz ; R ysko, Wojciech ; Tarasewicz, Dariusz</creator><creatorcontrib>Baran, ukasz ; R ysko, Wojciech ; Tarasewicz, Dariusz</creatorcontrib><description>In this study, we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. We have found that such molecules are able to form a variety of structures, depending on the parameters of the employed model. In particular, it has been demonstrated that even slight changes of the interaction zone and the shape of molecules can drastically alter the behavior of investigated systems. We have established the rules governing the formation of the Sierpinski triangles, Archimedean tessellation, Kagomé, and ladder networks. The appearance of Sierpinski triangles is rather surprising, since a majority of papers report the formation of such structures in completely different systems. The only general rule that has been established and proved experimentally is that the so-called "V-shape" molecules are able to order into Sierpinski triangles. In this study, we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. It has been shown that they can form multiple ordered networks, including Sierpinski triangles.</description><identifier>ISSN: 2058-9689</identifier><identifier>EISSN: 2058-9689</identifier><identifier>DOI: 10.1039/d1me00068c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Molecular dynamics ; Self-assembly ; Shape ; Tessellation</subject><ispartof>Molecular systems design &amp; engineering, 2021-10, Vol.6 (1), p.85-816</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-48f5b4d1b1f79c34d59b0d2b26ed57f241b656d03da9646a2230469fd6622c53</citedby><cites>FETCH-LOGICAL-c317t-48f5b4d1b1f79c34d59b0d2b26ed57f241b656d03da9646a2230469fd6622c53</cites><orcidid>0000-0003-1777-1998 ; 0000-0001-9806-6056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baran, ukasz</creatorcontrib><creatorcontrib>R ysko, Wojciech</creatorcontrib><creatorcontrib>Tarasewicz, Dariusz</creatorcontrib><title>Variation of interaction zone size for the target design of 2D supramolecular networks</title><title>Molecular systems design &amp; engineering</title><description>In this study, we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. We have found that such molecules are able to form a variety of structures, depending on the parameters of the employed model. In particular, it has been demonstrated that even slight changes of the interaction zone and the shape of molecules can drastically alter the behavior of investigated systems. We have established the rules governing the formation of the Sierpinski triangles, Archimedean tessellation, Kagomé, and ladder networks. The appearance of Sierpinski triangles is rather surprising, since a majority of papers report the formation of such structures in completely different systems. The only general rule that has been established and proved experimentally is that the so-called "V-shape" molecules are able to order into Sierpinski triangles. In this study, we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. It has been shown that they can form multiple ordered networks, including Sierpinski triangles.</description><subject>Molecular dynamics</subject><subject>Self-assembly</subject><subject>Shape</subject><subject>Tessellation</subject><issn>2058-9689</issn><issn>2058-9689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpN0MtLw0AQBvBFFCy1F-_Cgjchuu8kR-lDhYqX0mvY7KOmttk6u0HsX29sRT3NDPz4Bj6ELim5pYSXd5ZuHSFEFeYEDRiRRVaqojz9t5-jUYzr3lBVKCbVAC2XGhqdmtDi4HHTJgfaHM59aB2Ozd5hHwCnV4eThpVL2LrYrA6cTXDsdqC3YeNMt9GAW5c-ArzFC3Tm9Sa60c8cosVsuhg_ZvOXh6fx_TwznOYpE4WXtbC0pj4vDRdWljWxrGbKWZl7JmitpLKEW10qoTRjnAhVeqsUY0byIbo-xu4gvHcupmodOmj7jxWTeaFySQXr1c1RGQgxgvPVDpqths-Kkuq7uWpCn6eH5sY9vjpiiObX_TXLvwA7pWoU</recordid><startdate>20211004</startdate><enddate>20211004</enddate><creator>Baran, ukasz</creator><creator>R ysko, Wojciech</creator><creator>Tarasewicz, Dariusz</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1777-1998</orcidid><orcidid>https://orcid.org/0000-0001-9806-6056</orcidid></search><sort><creationdate>20211004</creationdate><title>Variation of interaction zone size for the target design of 2D supramolecular networks</title><author>Baran, ukasz ; R ysko, Wojciech ; Tarasewicz, Dariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-48f5b4d1b1f79c34d59b0d2b26ed57f241b656d03da9646a2230469fd6622c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Molecular dynamics</topic><topic>Self-assembly</topic><topic>Shape</topic><topic>Tessellation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baran, ukasz</creatorcontrib><creatorcontrib>R ysko, Wojciech</creatorcontrib><creatorcontrib>Tarasewicz, Dariusz</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Molecular systems design &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baran, ukasz</au><au>R ysko, Wojciech</au><au>Tarasewicz, Dariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variation of interaction zone size for the target design of 2D supramolecular networks</atitle><jtitle>Molecular systems design &amp; engineering</jtitle><date>2021-10-04</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><spage>85</spage><epage>816</epage><pages>85-816</pages><issn>2058-9689</issn><eissn>2058-9689</eissn><abstract>In this study, we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. We have found that such molecules are able to form a variety of structures, depending on the parameters of the employed model. In particular, it has been demonstrated that even slight changes of the interaction zone and the shape of molecules can drastically alter the behavior of investigated systems. We have established the rules governing the formation of the Sierpinski triangles, Archimedean tessellation, Kagomé, and ladder networks. The appearance of Sierpinski triangles is rather surprising, since a majority of papers report the formation of such structures in completely different systems. The only general rule that has been established and proved experimentally is that the so-called "V-shape" molecules are able to order into Sierpinski triangles. In this study, we have performed extensive coarse-grained molecular dynamics simulations of the self-assembly of tetra-substituted molecules. It has been shown that they can form multiple ordered networks, including Sierpinski triangles.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1me00068c</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1777-1998</orcidid><orcidid>https://orcid.org/0000-0001-9806-6056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-9689
ispartof Molecular systems design & engineering, 2021-10, Vol.6 (1), p.85-816
issn 2058-9689
2058-9689
language eng
recordid cdi_crossref_primary_10_1039_D1ME00068C
source Royal Society Of Chemistry Journals 2008-
subjects Molecular dynamics
Self-assembly
Shape
Tessellation
title Variation of interaction zone size for the target design of 2D supramolecular networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variation%20of%20interaction%20zone%20size%20for%20the%20target%20design%20of%202D%20supramolecular%20networks&rft.jtitle=Molecular%20systems%20design%20&%20engineering&rft.au=Baran,%20ukasz&rft.date=2021-10-04&rft.volume=6&rft.issue=1&rft.spage=85&rft.epage=816&rft.pages=85-816&rft.issn=2058-9689&rft.eissn=2058-9689&rft_id=info:doi/10.1039/d1me00068c&rft_dat=%3Cproquest_cross%3E2578675142%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578675142&rft_id=info:pmid/&rfr_iscdi=true