Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies
We report here molecular dynamics simulations combined with in situ experimental studies to understand the advantages and disadvantages of replacing conventional (salt-in-water, SiWE) aqueous-based electrolytes with very concentrated (water-in-salt, WiSE) systems in supercapacitors. Atomistic molecu...
Gespeichert in:
Veröffentlicht in: | Materials advances 2022-01, Vol.3 (1), p.611-623 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 623 |
---|---|
container_issue | 1 |
container_start_page | 611 |
container_title | Materials advances |
container_volume | 3 |
creator | C. da Silva, Débora A. Pinzón C., Manuel J. Messias, Andresa Fileti, Eudes E. Pascon, Aline Franco, Débora V. Da Silva, Leonardo Morais Zanin, Hudson G. |
description | We report here molecular dynamics simulations combined with
in situ
experimental studies to understand the advantages and disadvantages of replacing conventional (salt-in-water, SiWE) aqueous-based electrolytes with very concentrated (water-in-salt, WiSE) systems in supercapacitors. Atomistic molecular dynamics simulations were employed to investigate the energetic, structural, and transport properties of aqueous electrolytes based on sodium perchlorate (NaClO
4
). Simulations covered the concentrations range of 1 mol dm
−3
(1 mol kg
−1
) to 8 mol dm
−3
(15 mol kg
−1
), demonstrating a significant increase in viscosity and density and reduction in ionic conductivity as the concentration reaches the WiSE conditions. A carbon-based symmetric supercapacitor filled with WiSE showed a larger electrochemical stability window (ESW), allowing to span the cell voltage and specific energy. Larger ESW values are possible due to the formation of a solvent blocking interface (SBI). The formation of ionic aggregates owing to the increasing cohesive energy in WiSE disturbs the hydrogen-bond network resulting in physicochemical changes in the bulk liquid phase. In addition, the molal ratio between water and ions is decreased, resulting in a low interaction of the water molecules with the electrode at the interface, thus inhibiting the water-splitting considerably. |
doi_str_mv | 10.1039/D1MA00890K |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1MA00890K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D1MA00890K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-6011b1974d3d9f2c43d4d910f28a7ef6ba0508e1cbfe701e25d1a891485ee1df3</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIVNALX-AzImDn1ZhbVcpDFHGBc7Sx14pREle2UxS-jw8jKSA47ezszM5hCDnj7JKzRFzd8KclY4VgjwdkFudJEmUpE4f_8DGZe__GGIszzoXIZ-RzrTXKQK2m0naql8HsTBgu6M54af0eQqeowm5aJt07BHSR6SIPTaDYjHZnmyGgp7ajocZfTtbYGgkNrbCGnbFucvt-i07CFqQJ1vlr2tpR3TfgqBo6GA2eetOORDC28_tw041U6KmswYEc083H_kp96JVBf0qONDQe5z_zhLzerl9W99Hm-e5htdxEkotFiHLGeTWiVCVK6FimiUqV4EzHBSxQ5xWwjBXIZaVxwTjGmeJQCJ4WGSJXOjkh599_pbPeO9Tl1pkW3FByVk4VlH8VJF_-OH_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>C. da Silva, Débora A. ; Pinzón C., Manuel J. ; Messias, Andresa ; Fileti, Eudes E. ; Pascon, Aline ; Franco, Débora V. ; Da Silva, Leonardo Morais ; Zanin, Hudson G.</creator><creatorcontrib>C. da Silva, Débora A. ; Pinzón C., Manuel J. ; Messias, Andresa ; Fileti, Eudes E. ; Pascon, Aline ; Franco, Débora V. ; Da Silva, Leonardo Morais ; Zanin, Hudson G.</creatorcontrib><description>We report here molecular dynamics simulations combined with
in situ
experimental studies to understand the advantages and disadvantages of replacing conventional (salt-in-water, SiWE) aqueous-based electrolytes with very concentrated (water-in-salt, WiSE) systems in supercapacitors. Atomistic molecular dynamics simulations were employed to investigate the energetic, structural, and transport properties of aqueous electrolytes based on sodium perchlorate (NaClO
4
). Simulations covered the concentrations range of 1 mol dm
−3
(1 mol kg
−1
) to 8 mol dm
−3
(15 mol kg
−1
), demonstrating a significant increase in viscosity and density and reduction in ionic conductivity as the concentration reaches the WiSE conditions. A carbon-based symmetric supercapacitor filled with WiSE showed a larger electrochemical stability window (ESW), allowing to span the cell voltage and specific energy. Larger ESW values are possible due to the formation of a solvent blocking interface (SBI). The formation of ionic aggregates owing to the increasing cohesive energy in WiSE disturbs the hydrogen-bond network resulting in physicochemical changes in the bulk liquid phase. In addition, the molal ratio between water and ions is decreased, resulting in a low interaction of the water molecules with the electrode at the interface, thus inhibiting the water-splitting considerably.</description><identifier>ISSN: 2633-5409</identifier><identifier>EISSN: 2633-5409</identifier><identifier>DOI: 10.1039/D1MA00890K</identifier><language>eng</language><ispartof>Materials advances, 2022-01, Vol.3 (1), p.611-623</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c197t-6011b1974d3d9f2c43d4d910f28a7ef6ba0508e1cbfe701e25d1a891485ee1df3</citedby><cites>FETCH-LOGICAL-c197t-6011b1974d3d9f2c43d4d910f28a7ef6ba0508e1cbfe701e25d1a891485ee1df3</cites><orcidid>0000-0001-8741-2259 ; 0000-0003-0547-2472 ; 0000-0001-5772-2408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>C. da Silva, Débora A.</creatorcontrib><creatorcontrib>Pinzón C., Manuel J.</creatorcontrib><creatorcontrib>Messias, Andresa</creatorcontrib><creatorcontrib>Fileti, Eudes E.</creatorcontrib><creatorcontrib>Pascon, Aline</creatorcontrib><creatorcontrib>Franco, Débora V.</creatorcontrib><creatorcontrib>Da Silva, Leonardo Morais</creatorcontrib><creatorcontrib>Zanin, Hudson G.</creatorcontrib><title>Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies</title><title>Materials advances</title><description>We report here molecular dynamics simulations combined with
in situ
experimental studies to understand the advantages and disadvantages of replacing conventional (salt-in-water, SiWE) aqueous-based electrolytes with very concentrated (water-in-salt, WiSE) systems in supercapacitors. Atomistic molecular dynamics simulations were employed to investigate the energetic, structural, and transport properties of aqueous electrolytes based on sodium perchlorate (NaClO
4
). Simulations covered the concentrations range of 1 mol dm
−3
(1 mol kg
−1
) to 8 mol dm
−3
(15 mol kg
−1
), demonstrating a significant increase in viscosity and density and reduction in ionic conductivity as the concentration reaches the WiSE conditions. A carbon-based symmetric supercapacitor filled with WiSE showed a larger electrochemical stability window (ESW), allowing to span the cell voltage and specific energy. Larger ESW values are possible due to the formation of a solvent blocking interface (SBI). The formation of ionic aggregates owing to the increasing cohesive energy in WiSE disturbs the hydrogen-bond network resulting in physicochemical changes in the bulk liquid phase. In addition, the molal ratio between water and ions is decreased, resulting in a low interaction of the water molecules with the electrode at the interface, thus inhibiting the water-splitting considerably.</description><issn>2633-5409</issn><issn>2633-5409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUctOwzAQtBBIVNALX-AzImDn1ZhbVcpDFHGBc7Sx14pREle2UxS-jw8jKSA47ezszM5hCDnj7JKzRFzd8KclY4VgjwdkFudJEmUpE4f_8DGZe__GGIszzoXIZ-RzrTXKQK2m0naql8HsTBgu6M54af0eQqeowm5aJt07BHSR6SIPTaDYjHZnmyGgp7ajocZfTtbYGgkNrbCGnbFucvt-i07CFqQJ1vlr2tpR3TfgqBo6GA2eetOORDC28_tw041U6KmswYEc083H_kp96JVBf0qONDQe5z_zhLzerl9W99Hm-e5htdxEkotFiHLGeTWiVCVK6FimiUqV4EzHBSxQ5xWwjBXIZaVxwTjGmeJQCJ4WGSJXOjkh599_pbPeO9Tl1pkW3FByVk4VlH8VJF_-OH_U</recordid><startdate>20220104</startdate><enddate>20220104</enddate><creator>C. da Silva, Débora A.</creator><creator>Pinzón C., Manuel J.</creator><creator>Messias, Andresa</creator><creator>Fileti, Eudes E.</creator><creator>Pascon, Aline</creator><creator>Franco, Débora V.</creator><creator>Da Silva, Leonardo Morais</creator><creator>Zanin, Hudson G.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8741-2259</orcidid><orcidid>https://orcid.org/0000-0003-0547-2472</orcidid><orcidid>https://orcid.org/0000-0001-5772-2408</orcidid></search><sort><creationdate>20220104</creationdate><title>Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies</title><author>C. da Silva, Débora A. ; Pinzón C., Manuel J. ; Messias, Andresa ; Fileti, Eudes E. ; Pascon, Aline ; Franco, Débora V. ; Da Silva, Leonardo Morais ; Zanin, Hudson G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-6011b1974d3d9f2c43d4d910f28a7ef6ba0508e1cbfe701e25d1a891485ee1df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>C. da Silva, Débora A.</creatorcontrib><creatorcontrib>Pinzón C., Manuel J.</creatorcontrib><creatorcontrib>Messias, Andresa</creatorcontrib><creatorcontrib>Fileti, Eudes E.</creatorcontrib><creatorcontrib>Pascon, Aline</creatorcontrib><creatorcontrib>Franco, Débora V.</creatorcontrib><creatorcontrib>Da Silva, Leonardo Morais</creatorcontrib><creatorcontrib>Zanin, Hudson G.</creatorcontrib><collection>CrossRef</collection><jtitle>Materials advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>C. da Silva, Débora A.</au><au>Pinzón C., Manuel J.</au><au>Messias, Andresa</au><au>Fileti, Eudes E.</au><au>Pascon, Aline</au><au>Franco, Débora V.</au><au>Da Silva, Leonardo Morais</au><au>Zanin, Hudson G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies</atitle><jtitle>Materials advances</jtitle><date>2022-01-04</date><risdate>2022</risdate><volume>3</volume><issue>1</issue><spage>611</spage><epage>623</epage><pages>611-623</pages><issn>2633-5409</issn><eissn>2633-5409</eissn><abstract>We report here molecular dynamics simulations combined with
in situ
experimental studies to understand the advantages and disadvantages of replacing conventional (salt-in-water, SiWE) aqueous-based electrolytes with very concentrated (water-in-salt, WiSE) systems in supercapacitors. Atomistic molecular dynamics simulations were employed to investigate the energetic, structural, and transport properties of aqueous electrolytes based on sodium perchlorate (NaClO
4
). Simulations covered the concentrations range of 1 mol dm
−3
(1 mol kg
−1
) to 8 mol dm
−3
(15 mol kg
−1
), demonstrating a significant increase in viscosity and density and reduction in ionic conductivity as the concentration reaches the WiSE conditions. A carbon-based symmetric supercapacitor filled with WiSE showed a larger electrochemical stability window (ESW), allowing to span the cell voltage and specific energy. Larger ESW values are possible due to the formation of a solvent blocking interface (SBI). The formation of ionic aggregates owing to the increasing cohesive energy in WiSE disturbs the hydrogen-bond network resulting in physicochemical changes in the bulk liquid phase. In addition, the molal ratio between water and ions is decreased, resulting in a low interaction of the water molecules with the electrode at the interface, thus inhibiting the water-splitting considerably.</abstract><doi>10.1039/D1MA00890K</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8741-2259</orcidid><orcidid>https://orcid.org/0000-0003-0547-2472</orcidid><orcidid>https://orcid.org/0000-0001-5772-2408</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2633-5409 |
ispartof | Materials advances, 2022-01, Vol.3 (1), p.611-623 |
issn | 2633-5409 2633-5409 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1MA00890K |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20conductivity,%20viscosity,%20and%20density%20of%20water-in-salt%20electrolytes%20on%20the%20electrochemical%20behavior%20of%20supercapacitors:%20molecular%20dynamics%20simulations%20and%20in%20situ%20characterization%20studies&rft.jtitle=Materials%20advances&rft.au=C.%20da%20Silva,%20D%C3%A9bora%20A.&rft.date=2022-01-04&rft.volume=3&rft.issue=1&rft.spage=611&rft.epage=623&rft.pages=611-623&rft.issn=2633-5409&rft.eissn=2633-5409&rft_id=info:doi/10.1039/D1MA00890K&rft_dat=%3Ccrossref%3E10_1039_D1MA00890K%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |