Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies

We report here molecular dynamics simulations combined with in situ experimental studies to understand the advantages and disadvantages of replacing conventional (salt-in-water, SiWE) aqueous-based electrolytes with very concentrated (water-in-salt, WiSE) systems in supercapacitors. Atomistic molecu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials advances 2022-01, Vol.3 (1), p.611-623
Hauptverfasser: C. da Silva, Débora A., Pinzón C., Manuel J., Messias, Andresa, Fileti, Eudes E., Pascon, Aline, Franco, Débora V., Da Silva, Leonardo Morais, Zanin, Hudson G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 623
container_issue 1
container_start_page 611
container_title Materials advances
container_volume 3
creator C. da Silva, Débora A.
Pinzón C., Manuel J.
Messias, Andresa
Fileti, Eudes E.
Pascon, Aline
Franco, Débora V.
Da Silva, Leonardo Morais
Zanin, Hudson G.
description We report here molecular dynamics simulations combined with in situ experimental studies to understand the advantages and disadvantages of replacing conventional (salt-in-water, SiWE) aqueous-based electrolytes with very concentrated (water-in-salt, WiSE) systems in supercapacitors. Atomistic molecular dynamics simulations were employed to investigate the energetic, structural, and transport properties of aqueous electrolytes based on sodium perchlorate (NaClO 4 ). Simulations covered the concentrations range of 1 mol dm −3 (1 mol kg −1 ) to 8 mol dm −3 (15 mol kg −1 ), demonstrating a significant increase in viscosity and density and reduction in ionic conductivity as the concentration reaches the WiSE conditions. A carbon-based symmetric supercapacitor filled with WiSE showed a larger electrochemical stability window (ESW), allowing to span the cell voltage and specific energy. Larger ESW values are possible due to the formation of a solvent blocking interface (SBI). The formation of ionic aggregates owing to the increasing cohesive energy in WiSE disturbs the hydrogen-bond network resulting in physicochemical changes in the bulk liquid phase. In addition, the molal ratio between water and ions is decreased, resulting in a low interaction of the water molecules with the electrode at the interface, thus inhibiting the water-splitting considerably.
doi_str_mv 10.1039/D1MA00890K
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1MA00890K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D1MA00890K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-6011b1974d3d9f2c43d4d910f28a7ef6ba0508e1cbfe701e25d1a891485ee1df3</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIVNALX-AzImDn1ZhbVcpDFHGBc7Sx14pREle2UxS-jw8jKSA47ezszM5hCDnj7JKzRFzd8KclY4VgjwdkFudJEmUpE4f_8DGZe__GGIszzoXIZ-RzrTXKQK2m0naql8HsTBgu6M54af0eQqeowm5aJt07BHSR6SIPTaDYjHZnmyGgp7ajocZfTtbYGgkNrbCGnbFucvt-i07CFqQJ1vlr2tpR3TfgqBo6GA2eetOORDC28_tw041U6KmswYEc083H_kp96JVBf0qONDQe5z_zhLzerl9W99Hm-e5htdxEkotFiHLGeTWiVCVK6FimiUqV4EzHBSxQ5xWwjBXIZaVxwTjGmeJQCJ4WGSJXOjkh599_pbPeO9Tl1pkW3FByVk4VlH8VJF_-OH_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>C. da Silva, Débora A. ; Pinzón C., Manuel J. ; Messias, Andresa ; Fileti, Eudes E. ; Pascon, Aline ; Franco, Débora V. ; Da Silva, Leonardo Morais ; Zanin, Hudson G.</creator><creatorcontrib>C. da Silva, Débora A. ; Pinzón C., Manuel J. ; Messias, Andresa ; Fileti, Eudes E. ; Pascon, Aline ; Franco, Débora V. ; Da Silva, Leonardo Morais ; Zanin, Hudson G.</creatorcontrib><description>We report here molecular dynamics simulations combined with in situ experimental studies to understand the advantages and disadvantages of replacing conventional (salt-in-water, SiWE) aqueous-based electrolytes with very concentrated (water-in-salt, WiSE) systems in supercapacitors. Atomistic molecular dynamics simulations were employed to investigate the energetic, structural, and transport properties of aqueous electrolytes based on sodium perchlorate (NaClO 4 ). Simulations covered the concentrations range of 1 mol dm −3 (1 mol kg −1 ) to 8 mol dm −3 (15 mol kg −1 ), demonstrating a significant increase in viscosity and density and reduction in ionic conductivity as the concentration reaches the WiSE conditions. A carbon-based symmetric supercapacitor filled with WiSE showed a larger electrochemical stability window (ESW), allowing to span the cell voltage and specific energy. Larger ESW values are possible due to the formation of a solvent blocking interface (SBI). The formation of ionic aggregates owing to the increasing cohesive energy in WiSE disturbs the hydrogen-bond network resulting in physicochemical changes in the bulk liquid phase. In addition, the molal ratio between water and ions is decreased, resulting in a low interaction of the water molecules with the electrode at the interface, thus inhibiting the water-splitting considerably.</description><identifier>ISSN: 2633-5409</identifier><identifier>EISSN: 2633-5409</identifier><identifier>DOI: 10.1039/D1MA00890K</identifier><language>eng</language><ispartof>Materials advances, 2022-01, Vol.3 (1), p.611-623</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c197t-6011b1974d3d9f2c43d4d910f28a7ef6ba0508e1cbfe701e25d1a891485ee1df3</citedby><cites>FETCH-LOGICAL-c197t-6011b1974d3d9f2c43d4d910f28a7ef6ba0508e1cbfe701e25d1a891485ee1df3</cites><orcidid>0000-0001-8741-2259 ; 0000-0003-0547-2472 ; 0000-0001-5772-2408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>C. da Silva, Débora A.</creatorcontrib><creatorcontrib>Pinzón C., Manuel J.</creatorcontrib><creatorcontrib>Messias, Andresa</creatorcontrib><creatorcontrib>Fileti, Eudes E.</creatorcontrib><creatorcontrib>Pascon, Aline</creatorcontrib><creatorcontrib>Franco, Débora V.</creatorcontrib><creatorcontrib>Da Silva, Leonardo Morais</creatorcontrib><creatorcontrib>Zanin, Hudson G.</creatorcontrib><title>Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies</title><title>Materials advances</title><description>We report here molecular dynamics simulations combined with in situ experimental studies to understand the advantages and disadvantages of replacing conventional (salt-in-water, SiWE) aqueous-based electrolytes with very concentrated (water-in-salt, WiSE) systems in supercapacitors. Atomistic molecular dynamics simulations were employed to investigate the energetic, structural, and transport properties of aqueous electrolytes based on sodium perchlorate (NaClO 4 ). Simulations covered the concentrations range of 1 mol dm −3 (1 mol kg −1 ) to 8 mol dm −3 (15 mol kg −1 ), demonstrating a significant increase in viscosity and density and reduction in ionic conductivity as the concentration reaches the WiSE conditions. A carbon-based symmetric supercapacitor filled with WiSE showed a larger electrochemical stability window (ESW), allowing to span the cell voltage and specific energy. Larger ESW values are possible due to the formation of a solvent blocking interface (SBI). The formation of ionic aggregates owing to the increasing cohesive energy in WiSE disturbs the hydrogen-bond network resulting in physicochemical changes in the bulk liquid phase. In addition, the molal ratio between water and ions is decreased, resulting in a low interaction of the water molecules with the electrode at the interface, thus inhibiting the water-splitting considerably.</description><issn>2633-5409</issn><issn>2633-5409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNUctOwzAQtBBIVNALX-AzImDn1ZhbVcpDFHGBc7Sx14pREle2UxS-jw8jKSA47ezszM5hCDnj7JKzRFzd8KclY4VgjwdkFudJEmUpE4f_8DGZe__GGIszzoXIZ-RzrTXKQK2m0naql8HsTBgu6M54af0eQqeowm5aJt07BHSR6SIPTaDYjHZnmyGgp7ajocZfTtbYGgkNrbCGnbFucvt-i07CFqQJ1vlr2tpR3TfgqBo6GA2eetOORDC28_tw041U6KmswYEc083H_kp96JVBf0qONDQe5z_zhLzerl9W99Hm-e5htdxEkotFiHLGeTWiVCVK6FimiUqV4EzHBSxQ5xWwjBXIZaVxwTjGmeJQCJ4WGSJXOjkh599_pbPeO9Tl1pkW3FByVk4VlH8VJF_-OH_U</recordid><startdate>20220104</startdate><enddate>20220104</enddate><creator>C. da Silva, Débora A.</creator><creator>Pinzón C., Manuel J.</creator><creator>Messias, Andresa</creator><creator>Fileti, Eudes E.</creator><creator>Pascon, Aline</creator><creator>Franco, Débora V.</creator><creator>Da Silva, Leonardo Morais</creator><creator>Zanin, Hudson G.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8741-2259</orcidid><orcidid>https://orcid.org/0000-0003-0547-2472</orcidid><orcidid>https://orcid.org/0000-0001-5772-2408</orcidid></search><sort><creationdate>20220104</creationdate><title>Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies</title><author>C. da Silva, Débora A. ; Pinzón C., Manuel J. ; Messias, Andresa ; Fileti, Eudes E. ; Pascon, Aline ; Franco, Débora V. ; Da Silva, Leonardo Morais ; Zanin, Hudson G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-6011b1974d3d9f2c43d4d910f28a7ef6ba0508e1cbfe701e25d1a891485ee1df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>C. da Silva, Débora A.</creatorcontrib><creatorcontrib>Pinzón C., Manuel J.</creatorcontrib><creatorcontrib>Messias, Andresa</creatorcontrib><creatorcontrib>Fileti, Eudes E.</creatorcontrib><creatorcontrib>Pascon, Aline</creatorcontrib><creatorcontrib>Franco, Débora V.</creatorcontrib><creatorcontrib>Da Silva, Leonardo Morais</creatorcontrib><creatorcontrib>Zanin, Hudson G.</creatorcontrib><collection>CrossRef</collection><jtitle>Materials advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>C. da Silva, Débora A.</au><au>Pinzón C., Manuel J.</au><au>Messias, Andresa</au><au>Fileti, Eudes E.</au><au>Pascon, Aline</au><au>Franco, Débora V.</au><au>Da Silva, Leonardo Morais</au><au>Zanin, Hudson G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies</atitle><jtitle>Materials advances</jtitle><date>2022-01-04</date><risdate>2022</risdate><volume>3</volume><issue>1</issue><spage>611</spage><epage>623</epage><pages>611-623</pages><issn>2633-5409</issn><eissn>2633-5409</eissn><abstract>We report here molecular dynamics simulations combined with in situ experimental studies to understand the advantages and disadvantages of replacing conventional (salt-in-water, SiWE) aqueous-based electrolytes with very concentrated (water-in-salt, WiSE) systems in supercapacitors. Atomistic molecular dynamics simulations were employed to investigate the energetic, structural, and transport properties of aqueous electrolytes based on sodium perchlorate (NaClO 4 ). Simulations covered the concentrations range of 1 mol dm −3 (1 mol kg −1 ) to 8 mol dm −3 (15 mol kg −1 ), demonstrating a significant increase in viscosity and density and reduction in ionic conductivity as the concentration reaches the WiSE conditions. A carbon-based symmetric supercapacitor filled with WiSE showed a larger electrochemical stability window (ESW), allowing to span the cell voltage and specific energy. Larger ESW values are possible due to the formation of a solvent blocking interface (SBI). The formation of ionic aggregates owing to the increasing cohesive energy in WiSE disturbs the hydrogen-bond network resulting in physicochemical changes in the bulk liquid phase. In addition, the molal ratio between water and ions is decreased, resulting in a low interaction of the water molecules with the electrode at the interface, thus inhibiting the water-splitting considerably.</abstract><doi>10.1039/D1MA00890K</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8741-2259</orcidid><orcidid>https://orcid.org/0000-0003-0547-2472</orcidid><orcidid>https://orcid.org/0000-0001-5772-2408</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2633-5409
ispartof Materials advances, 2022-01, Vol.3 (1), p.611-623
issn 2633-5409
2633-5409
language eng
recordid cdi_crossref_primary_10_1039_D1MA00890K
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Effect of conductivity, viscosity, and density of water-in-salt electrolytes on the electrochemical behavior of supercapacitors: molecular dynamics simulations and in situ characterization studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20conductivity,%20viscosity,%20and%20density%20of%20water-in-salt%20electrolytes%20on%20the%20electrochemical%20behavior%20of%20supercapacitors:%20molecular%20dynamics%20simulations%20and%20in%20situ%20characterization%20studies&rft.jtitle=Materials%20advances&rft.au=C.%20da%20Silva,%20D%C3%A9bora%20A.&rft.date=2022-01-04&rft.volume=3&rft.issue=1&rft.spage=611&rft.epage=623&rft.pages=611-623&rft.issn=2633-5409&rft.eissn=2633-5409&rft_id=info:doi/10.1039/D1MA00890K&rft_dat=%3Ccrossref%3E10_1039_D1MA00890K%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true