The application of machine learning for predicting the methane uptake and working capacity of MOFs
Multiple linear regression analysis, as a part of machine learning, is employed to develop equations for the quick and accurate prediction of the methane uptake and working capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of MOFs (geometric descriptors) are employed fo...
Gespeichert in:
Veröffentlicht in: | Faraday discussions 2021-10, Vol.231, p.224-234 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | |
container_start_page | 224 |
container_title | Faraday discussions |
container_volume | 231 |
creator | Suyetin, Mikhail |
description | Multiple linear regression analysis, as a part of machine learning, is employed to develop equations for the quick and accurate prediction of the methane uptake and working capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of MOFs (geometric descriptors) are employed for developing the equations: surface area, pore volume and density of the crystal structure. The values of the geometric descriptors can be obtained much more cheaply in terms of time and other resources compared to running calculations of gas sorption or performing experimental work. Within this work sets of equations are provided for the different cases studied: a series of MOFs with NbO topology, a set of benchmark MOFs with outstanding methane storage and working capacities, and the whole CoRE MOF database (11 000 structures).
Multiple linear regression as a part of machine learning is employed to develop equations to predict the methane uptake and working capacity of MOFs. Only three geometrical descriptors are used in the equations: surface area, pore volume and density. |
doi_str_mv | 10.1039/d1fd00011j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1FD00011J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547546939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-a3d99309adf0e4707c6cb8a5f58ca2e68c235a08bff4f0f8f1817783ab2734843</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgCs7pxbtQ8CJCNWmSNjnK5vzBZJd5LmmauGxdU5MU2X9vuomCpyS8T7483gPgEsE7BDG_r5GuIYQIrY_ACOGcpJRwdjzcKU_znMBTcOb9Opo8VkegWq5UIrquMVIEY9vE6mQr5Mq0KmmUcK1pPxJtXdI5VRsZhmeIX7YqrEQ0fRfEJia0dfJl3WYoS9EJacJuiHpbzPw5ONGi8eri5xyD99njcvKczhdPL5OHeSoxRyEVuOYcQy5qDRUpYCFzWTFBNWVSZCpnMsNUQFZpTTTUTCOGioJhUWUFJozgMbg55HbOfvbKh3JrvFRNE_u0vS8zSgpKco55pNf_6Nr2ro3dRcUySItsr24PSjrrvVO67JzZCrcrESyHcZdTNJvux_0a8dUBOy9_3d868Ddpk3u9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582057239</pqid></control><display><type>article</type><title>The application of machine learning for predicting the methane uptake and working capacity of MOFs</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Suyetin, Mikhail</creator><creatorcontrib>Suyetin, Mikhail</creatorcontrib><description>Multiple linear regression analysis, as a part of machine learning, is employed to develop equations for the quick and accurate prediction of the methane uptake and working capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of MOFs (geometric descriptors) are employed for developing the equations: surface area, pore volume and density of the crystal structure. The values of the geometric descriptors can be obtained much more cheaply in terms of time and other resources compared to running calculations of gas sorption or performing experimental work. Within this work sets of equations are provided for the different cases studied: a series of MOFs with NbO topology, a set of benchmark MOFs with outstanding methane storage and working capacities, and the whole CoRE MOF database (11 000 structures).
Multiple linear regression as a part of machine learning is employed to develop equations to predict the methane uptake and working capacity of MOFs. Only three geometrical descriptors are used in the equations: surface area, pore volume and density.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/d1fd00011j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crystal structure ; Machine learning ; Mathematical analysis ; Metal-organic frameworks ; Methane ; Niobium oxides ; Regression analysis ; Topology ; Work capacity</subject><ispartof>Faraday discussions, 2021-10, Vol.231, p.224-234</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-a3d99309adf0e4707c6cb8a5f58ca2e68c235a08bff4f0f8f1817783ab2734843</citedby><cites>FETCH-LOGICAL-c391t-a3d99309adf0e4707c6cb8a5f58ca2e68c235a08bff4f0f8f1817783ab2734843</cites><orcidid>0000-0001-5099-5104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Suyetin, Mikhail</creatorcontrib><title>The application of machine learning for predicting the methane uptake and working capacity of MOFs</title><title>Faraday discussions</title><description>Multiple linear regression analysis, as a part of machine learning, is employed to develop equations for the quick and accurate prediction of the methane uptake and working capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of MOFs (geometric descriptors) are employed for developing the equations: surface area, pore volume and density of the crystal structure. The values of the geometric descriptors can be obtained much more cheaply in terms of time and other resources compared to running calculations of gas sorption or performing experimental work. Within this work sets of equations are provided for the different cases studied: a series of MOFs with NbO topology, a set of benchmark MOFs with outstanding methane storage and working capacities, and the whole CoRE MOF database (11 000 structures).
Multiple linear regression as a part of machine learning is employed to develop equations to predict the methane uptake and working capacity of MOFs. Only three geometrical descriptors are used in the equations: surface area, pore volume and density.</description><subject>Crystal structure</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Metal-organic frameworks</subject><subject>Methane</subject><subject>Niobium oxides</subject><subject>Regression analysis</subject><subject>Topology</subject><subject>Work capacity</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgCs7pxbtQ8CJCNWmSNjnK5vzBZJd5LmmauGxdU5MU2X9vuomCpyS8T7483gPgEsE7BDG_r5GuIYQIrY_ACOGcpJRwdjzcKU_znMBTcOb9Opo8VkegWq5UIrquMVIEY9vE6mQr5Mq0KmmUcK1pPxJtXdI5VRsZhmeIX7YqrEQ0fRfEJia0dfJl3WYoS9EJacJuiHpbzPw5ONGi8eri5xyD99njcvKczhdPL5OHeSoxRyEVuOYcQy5qDRUpYCFzWTFBNWVSZCpnMsNUQFZpTTTUTCOGioJhUWUFJozgMbg55HbOfvbKh3JrvFRNE_u0vS8zSgpKco55pNf_6Nr2ro3dRcUySItsr24PSjrrvVO67JzZCrcrESyHcZdTNJvux_0a8dUBOy9_3d868Ddpk3u9</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Suyetin, Mikhail</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5099-5104</orcidid></search><sort><creationdate>20211015</creationdate><title>The application of machine learning for predicting the methane uptake and working capacity of MOFs</title><author>Suyetin, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-a3d99309adf0e4707c6cb8a5f58ca2e68c235a08bff4f0f8f1817783ab2734843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystal structure</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Metal-organic frameworks</topic><topic>Methane</topic><topic>Niobium oxides</topic><topic>Regression analysis</topic><topic>Topology</topic><topic>Work capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suyetin, Mikhail</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suyetin, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of machine learning for predicting the methane uptake and working capacity of MOFs</atitle><jtitle>Faraday discussions</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>231</volume><spage>224</spage><epage>234</epage><pages>224-234</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>Multiple linear regression analysis, as a part of machine learning, is employed to develop equations for the quick and accurate prediction of the methane uptake and working capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of MOFs (geometric descriptors) are employed for developing the equations: surface area, pore volume and density of the crystal structure. The values of the geometric descriptors can be obtained much more cheaply in terms of time and other resources compared to running calculations of gas sorption or performing experimental work. Within this work sets of equations are provided for the different cases studied: a series of MOFs with NbO topology, a set of benchmark MOFs with outstanding methane storage and working capacities, and the whole CoRE MOF database (11 000 structures).
Multiple linear regression as a part of machine learning is employed to develop equations to predict the methane uptake and working capacity of MOFs. Only three geometrical descriptors are used in the equations: surface area, pore volume and density.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1fd00011j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5099-5104</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6640 |
ispartof | Faraday discussions, 2021-10, Vol.231, p.224-234 |
issn | 1359-6640 1364-5498 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1FD00011J |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Crystal structure Machine learning Mathematical analysis Metal-organic frameworks Methane Niobium oxides Regression analysis Topology Work capacity |
title | The application of machine learning for predicting the methane uptake and working capacity of MOFs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20machine%20learning%20for%20predicting%20the%20methane%20uptake%20and%20working%20capacity%20of%20MOFs&rft.jtitle=Faraday%20discussions&rft.au=Suyetin,%20Mikhail&rft.date=2021-10-15&rft.volume=231&rft.spage=224&rft.epage=234&rft.pages=224-234&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/d1fd00011j&rft_dat=%3Cproquest_cross%3E2547546939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582057239&rft_id=info:pmid/&rfr_iscdi=true |