The application of machine learning for predicting the methane uptake and working capacity of MOFs

Multiple linear regression analysis, as a part of machine learning, is employed to develop equations for the quick and accurate prediction of the methane uptake and working capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of MOFs (geometric descriptors) are employed fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2021-10, Vol.231, p.224-234
1. Verfasser: Suyetin, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue
container_start_page 224
container_title Faraday discussions
container_volume 231
creator Suyetin, Mikhail
description Multiple linear regression analysis, as a part of machine learning, is employed to develop equations for the quick and accurate prediction of the methane uptake and working capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of MOFs (geometric descriptors) are employed for developing the equations: surface area, pore volume and density of the crystal structure. The values of the geometric descriptors can be obtained much more cheaply in terms of time and other resources compared to running calculations of gas sorption or performing experimental work. Within this work sets of equations are provided for the different cases studied: a series of MOFs with NbO topology, a set of benchmark MOFs with outstanding methane storage and working capacities, and the whole CoRE MOF database (11 000 structures). Multiple linear regression as a part of machine learning is employed to develop equations to predict the methane uptake and working capacity of MOFs. Only three geometrical descriptors are used in the equations: surface area, pore volume and density.
doi_str_mv 10.1039/d1fd00011j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1FD00011J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547546939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-a3d99309adf0e4707c6cb8a5f58ca2e68c235a08bff4f0f8f1817783ab2734843</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgCs7pxbtQ8CJCNWmSNjnK5vzBZJd5LmmauGxdU5MU2X9vuomCpyS8T7483gPgEsE7BDG_r5GuIYQIrY_ACOGcpJRwdjzcKU_znMBTcOb9Opo8VkegWq5UIrquMVIEY9vE6mQr5Mq0KmmUcK1pPxJtXdI5VRsZhmeIX7YqrEQ0fRfEJia0dfJl3WYoS9EJacJuiHpbzPw5ONGi8eri5xyD99njcvKczhdPL5OHeSoxRyEVuOYcQy5qDRUpYCFzWTFBNWVSZCpnMsNUQFZpTTTUTCOGioJhUWUFJozgMbg55HbOfvbKh3JrvFRNE_u0vS8zSgpKco55pNf_6Nr2ro3dRcUySItsr24PSjrrvVO67JzZCrcrESyHcZdTNJvux_0a8dUBOy9_3d868Ddpk3u9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582057239</pqid></control><display><type>article</type><title>The application of machine learning for predicting the methane uptake and working capacity of MOFs</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Suyetin, Mikhail</creator><creatorcontrib>Suyetin, Mikhail</creatorcontrib><description>Multiple linear regression analysis, as a part of machine learning, is employed to develop equations for the quick and accurate prediction of the methane uptake and working capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of MOFs (geometric descriptors) are employed for developing the equations: surface area, pore volume and density of the crystal structure. The values of the geometric descriptors can be obtained much more cheaply in terms of time and other resources compared to running calculations of gas sorption or performing experimental work. Within this work sets of equations are provided for the different cases studied: a series of MOFs with NbO topology, a set of benchmark MOFs with outstanding methane storage and working capacities, and the whole CoRE MOF database (11 000 structures). Multiple linear regression as a part of machine learning is employed to develop equations to predict the methane uptake and working capacity of MOFs. Only three geometrical descriptors are used in the equations: surface area, pore volume and density.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><identifier>DOI: 10.1039/d1fd00011j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crystal structure ; Machine learning ; Mathematical analysis ; Metal-organic frameworks ; Methane ; Niobium oxides ; Regression analysis ; Topology ; Work capacity</subject><ispartof>Faraday discussions, 2021-10, Vol.231, p.224-234</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-a3d99309adf0e4707c6cb8a5f58ca2e68c235a08bff4f0f8f1817783ab2734843</citedby><cites>FETCH-LOGICAL-c391t-a3d99309adf0e4707c6cb8a5f58ca2e68c235a08bff4f0f8f1817783ab2734843</cites><orcidid>0000-0001-5099-5104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Suyetin, Mikhail</creatorcontrib><title>The application of machine learning for predicting the methane uptake and working capacity of MOFs</title><title>Faraday discussions</title><description>Multiple linear regression analysis, as a part of machine learning, is employed to develop equations for the quick and accurate prediction of the methane uptake and working capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of MOFs (geometric descriptors) are employed for developing the equations: surface area, pore volume and density of the crystal structure. The values of the geometric descriptors can be obtained much more cheaply in terms of time and other resources compared to running calculations of gas sorption or performing experimental work. Within this work sets of equations are provided for the different cases studied: a series of MOFs with NbO topology, a set of benchmark MOFs with outstanding methane storage and working capacities, and the whole CoRE MOF database (11 000 structures). Multiple linear regression as a part of machine learning is employed to develop equations to predict the methane uptake and working capacity of MOFs. Only three geometrical descriptors are used in the equations: surface area, pore volume and density.</description><subject>Crystal structure</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Metal-organic frameworks</subject><subject>Methane</subject><subject>Niobium oxides</subject><subject>Regression analysis</subject><subject>Topology</subject><subject>Work capacity</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgCs7pxbtQ8CJCNWmSNjnK5vzBZJd5LmmauGxdU5MU2X9vuomCpyS8T7483gPgEsE7BDG_r5GuIYQIrY_ACOGcpJRwdjzcKU_znMBTcOb9Opo8VkegWq5UIrquMVIEY9vE6mQr5Mq0KmmUcK1pPxJtXdI5VRsZhmeIX7YqrEQ0fRfEJia0dfJl3WYoS9EJacJuiHpbzPw5ONGi8eri5xyD99njcvKczhdPL5OHeSoxRyEVuOYcQy5qDRUpYCFzWTFBNWVSZCpnMsNUQFZpTTTUTCOGioJhUWUFJozgMbg55HbOfvbKh3JrvFRNE_u0vS8zSgpKco55pNf_6Nr2ro3dRcUySItsr24PSjrrvVO67JzZCrcrESyHcZdTNJvux_0a8dUBOy9_3d868Ddpk3u9</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Suyetin, Mikhail</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5099-5104</orcidid></search><sort><creationdate>20211015</creationdate><title>The application of machine learning for predicting the methane uptake and working capacity of MOFs</title><author>Suyetin, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-a3d99309adf0e4707c6cb8a5f58ca2e68c235a08bff4f0f8f1817783ab2734843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crystal structure</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Metal-organic frameworks</topic><topic>Methane</topic><topic>Niobium oxides</topic><topic>Regression analysis</topic><topic>Topology</topic><topic>Work capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suyetin, Mikhail</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suyetin, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The application of machine learning for predicting the methane uptake and working capacity of MOFs</atitle><jtitle>Faraday discussions</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>231</volume><spage>224</spage><epage>234</epage><pages>224-234</pages><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>Multiple linear regression analysis, as a part of machine learning, is employed to develop equations for the quick and accurate prediction of the methane uptake and working capacity of metal-organic frameworks (MOFs). Only three crystal characteristics of MOFs (geometric descriptors) are employed for developing the equations: surface area, pore volume and density of the crystal structure. The values of the geometric descriptors can be obtained much more cheaply in terms of time and other resources compared to running calculations of gas sorption or performing experimental work. Within this work sets of equations are provided for the different cases studied: a series of MOFs with NbO topology, a set of benchmark MOFs with outstanding methane storage and working capacities, and the whole CoRE MOF database (11 000 structures). Multiple linear regression as a part of machine learning is employed to develop equations to predict the methane uptake and working capacity of MOFs. Only three geometrical descriptors are used in the equations: surface area, pore volume and density.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1fd00011j</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5099-5104</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6640
ispartof Faraday discussions, 2021-10, Vol.231, p.224-234
issn 1359-6640
1364-5498
language eng
recordid cdi_crossref_primary_10_1039_D1FD00011J
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Crystal structure
Machine learning
Mathematical analysis
Metal-organic frameworks
Methane
Niobium oxides
Regression analysis
Topology
Work capacity
title The application of machine learning for predicting the methane uptake and working capacity of MOFs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20application%20of%20machine%20learning%20for%20predicting%20the%20methane%20uptake%20and%20working%20capacity%20of%20MOFs&rft.jtitle=Faraday%20discussions&rft.au=Suyetin,%20Mikhail&rft.date=2021-10-15&rft.volume=231&rft.spage=224&rft.epage=234&rft.pages=224-234&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/10.1039/d1fd00011j&rft_dat=%3Cproquest_cross%3E2547546939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582057239&rft_id=info:pmid/&rfr_iscdi=true