Aromaticity-promoted CS 2 activation by heterocycle-bridged P/N-FLPs: a comparative DFT study with CO 2 capture

Carbon dioxide (CO ) capture has attracted considerable attention from both experimental and theoretical chemists. In comparison, carbon disulfide (CS ) activation is less developed. Here, we carry out a thorough comparative density functional theory study to examine the reaction mechanisms of CS ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-01, Vol.24 (4), p.2521-2526
Hauptverfasser: Li, Yuanyuan, Zhuang, Danling, Qiu, Rulin, Zhu, Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2526
container_issue 4
container_start_page 2521
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Li, Yuanyuan
Zhuang, Danling
Qiu, Rulin
Zhu, Jun
description Carbon dioxide (CO ) capture has attracted considerable attention from both experimental and theoretical chemists. In comparison, carbon disulfide (CS ) activation is less developed. Here, we carry out a thorough comparative density functional theory study to examine the reaction mechanisms of CS activation by five-membered heterocycle-bridged P/N frustrated Lewis pairs (FLPs). Calculations suggest that despite a weaker carbon-sulfur bond, all the CS activations have higher reaction barriers than the CO capture, which could be attributed to electrostatic repulsion between FLPs and CS caused by the reversed polarity of CS in CS rather than the electrostatic attraction in CO capture. In addition, aromaticity is found to play an important role in CS capture as it stabilizes both the transition states and products in heterocycle-bridged FLPs. All these findings could be useful for experimentalists to realize small molecule activations by FLPs.
doi_str_mv 10.1039/D1CP05319A
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1CP05319A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35023524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c994-deea3df222bf11742c79092791d97ef4de24da8f13334cf52805983e0393b2a83</originalsourceid><addsrcrecordid>eNpFkMtKAzEARYMotlY3foBkLcTmNZ2JuzK1KhRbsPshk4cd6ZghSVvm741U6-peuIe7OADcEvxAMBPjGSlXOGNETM_AkPAJQwIX_PzU88kAXIXwiTEmGWGXYMAyTFlG-RC4qXetjI1qYo-61F00GpbvkEKpYrNPk_uCdQ83JhrvVK-2BtW-0R8JW43f0HyxCo9QQuXaTvqE7w2czdcwxJ3u4aGJG1gu05uSXdx5cw0urNwGc_ObI7CeP63LF7RYPr-W0wVSQnCkjZFMW0ppbQnJOVW5wILmgmiRG8u1oVzLwhLGGFc2owXORMFMssFqKgs2AvfHW-VdCN7YqvNNK31fEVz9SKv-pSX47gh3u7o1-oT-WWLf4npl6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aromaticity-promoted CS 2 activation by heterocycle-bridged P/N-FLPs: a comparative DFT study with CO 2 capture</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Li, Yuanyuan ; Zhuang, Danling ; Qiu, Rulin ; Zhu, Jun</creator><creatorcontrib>Li, Yuanyuan ; Zhuang, Danling ; Qiu, Rulin ; Zhu, Jun</creatorcontrib><description>Carbon dioxide (CO ) capture has attracted considerable attention from both experimental and theoretical chemists. In comparison, carbon disulfide (CS ) activation is less developed. Here, we carry out a thorough comparative density functional theory study to examine the reaction mechanisms of CS activation by five-membered heterocycle-bridged P/N frustrated Lewis pairs (FLPs). Calculations suggest that despite a weaker carbon-sulfur bond, all the CS activations have higher reaction barriers than the CO capture, which could be attributed to electrostatic repulsion between FLPs and CS caused by the reversed polarity of CS in CS rather than the electrostatic attraction in CO capture. In addition, aromaticity is found to play an important role in CS capture as it stabilizes both the transition states and products in heterocycle-bridged FLPs. All these findings could be useful for experimentalists to realize small molecule activations by FLPs.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/D1CP05319A</identifier><identifier>PMID: 35023524</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2022-01, Vol.24 (4), p.2521-2526</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c994-deea3df222bf11742c79092791d97ef4de24da8f13334cf52805983e0393b2a83</citedby><cites>FETCH-LOGICAL-c994-deea3df222bf11742c79092791d97ef4de24da8f13334cf52805983e0393b2a83</cites><orcidid>0000-0002-2099-3156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35023524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Zhuang, Danling</creatorcontrib><creatorcontrib>Qiu, Rulin</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><title>Aromaticity-promoted CS 2 activation by heterocycle-bridged P/N-FLPs: a comparative DFT study with CO 2 capture</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Carbon dioxide (CO ) capture has attracted considerable attention from both experimental and theoretical chemists. In comparison, carbon disulfide (CS ) activation is less developed. Here, we carry out a thorough comparative density functional theory study to examine the reaction mechanisms of CS activation by five-membered heterocycle-bridged P/N frustrated Lewis pairs (FLPs). Calculations suggest that despite a weaker carbon-sulfur bond, all the CS activations have higher reaction barriers than the CO capture, which could be attributed to electrostatic repulsion between FLPs and CS caused by the reversed polarity of CS in CS rather than the electrostatic attraction in CO capture. In addition, aromaticity is found to play an important role in CS capture as it stabilizes both the transition states and products in heterocycle-bridged FLPs. All these findings could be useful for experimentalists to realize small molecule activations by FLPs.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKAzEARYMotlY3foBkLcTmNZ2JuzK1KhRbsPshk4cd6ZghSVvm741U6-peuIe7OADcEvxAMBPjGSlXOGNETM_AkPAJQwIX_PzU88kAXIXwiTEmGWGXYMAyTFlG-RC4qXetjI1qYo-61F00GpbvkEKpYrNPk_uCdQ83JhrvVK-2BtW-0R8JW43f0HyxCo9QQuXaTvqE7w2czdcwxJ3u4aGJG1gu05uSXdx5cw0urNwGc_ObI7CeP63LF7RYPr-W0wVSQnCkjZFMW0ppbQnJOVW5wILmgmiRG8u1oVzLwhLGGFc2owXORMFMssFqKgs2AvfHW-VdCN7YqvNNK31fEVz9SKv-pSX47gh3u7o1-oT-WWLf4npl6g</recordid><startdate>20220126</startdate><enddate>20220126</enddate><creator>Li, Yuanyuan</creator><creator>Zhuang, Danling</creator><creator>Qiu, Rulin</creator><creator>Zhu, Jun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2099-3156</orcidid></search><sort><creationdate>20220126</creationdate><title>Aromaticity-promoted CS 2 activation by heterocycle-bridged P/N-FLPs: a comparative DFT study with CO 2 capture</title><author>Li, Yuanyuan ; Zhuang, Danling ; Qiu, Rulin ; Zhu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c994-deea3df222bf11742c79092791d97ef4de24da8f13334cf52805983e0393b2a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Zhuang, Danling</creatorcontrib><creatorcontrib>Qiu, Rulin</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuanyuan</au><au>Zhuang, Danling</au><au>Qiu, Rulin</au><au>Zhu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aromaticity-promoted CS 2 activation by heterocycle-bridged P/N-FLPs: a comparative DFT study with CO 2 capture</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2022-01-26</date><risdate>2022</risdate><volume>24</volume><issue>4</issue><spage>2521</spage><epage>2526</epage><pages>2521-2526</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Carbon dioxide (CO ) capture has attracted considerable attention from both experimental and theoretical chemists. In comparison, carbon disulfide (CS ) activation is less developed. Here, we carry out a thorough comparative density functional theory study to examine the reaction mechanisms of CS activation by five-membered heterocycle-bridged P/N frustrated Lewis pairs (FLPs). Calculations suggest that despite a weaker carbon-sulfur bond, all the CS activations have higher reaction barriers than the CO capture, which could be attributed to electrostatic repulsion between FLPs and CS caused by the reversed polarity of CS in CS rather than the electrostatic attraction in CO capture. In addition, aromaticity is found to play an important role in CS capture as it stabilizes both the transition states and products in heterocycle-bridged FLPs. All these findings could be useful for experimentalists to realize small molecule activations by FLPs.</abstract><cop>England</cop><pmid>35023524</pmid><doi>10.1039/D1CP05319A</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2099-3156</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-01, Vol.24 (4), p.2521-2526
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_D1CP05319A
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Aromaticity-promoted CS 2 activation by heterocycle-bridged P/N-FLPs: a comparative DFT study with CO 2 capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aromaticity-promoted%20CS%202%20activation%20by%20heterocycle-bridged%20P/N-FLPs:%20a%20comparative%20DFT%20study%20with%20CO%202%20capture&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Li,%20Yuanyuan&rft.date=2022-01-26&rft.volume=24&rft.issue=4&rft.spage=2521&rft.epage=2526&rft.pages=2521-2526&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/D1CP05319A&rft_dat=%3Cpubmed_cross%3E35023524%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35023524&rfr_iscdi=true