Time-dependent quantum dynamics study of the F + C 2 H 6 → HF + C 2 H 5 reaction
The reaction probabilities, integral cross sections, energy efficiency and rate constants are investigated for the F + C 2 H 6 reaction using the quantum reaction dynamics, wave packet method. The ground-state integral cross section calculated using a six-degree-of-freedom approach is in very good a...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2021-12, Vol.23 (47), p.26911-26918 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26918 |
---|---|
container_issue | 47 |
container_start_page | 26911 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 23 |
creator | Gao, Delu Wang, Dunyou |
description | The reaction probabilities, integral cross sections, energy efficiency and rate constants are investigated for the F + C
2
H
6
reaction using the quantum reaction dynamics, wave packet method. The ground-state integral cross section calculated using a six-degree-of-freedom approach is in very good agreement with the quasi-classical trajectory results. We find that the H–CH
2
CH
3
stretching motion has the largest enhancement to reactivity, followed by the H–CH
2
–CH
3
bending motion. However, the stretching motion between CH
2
and CH
3
slightly hinders the reactivity. The energy-form efficacy based on an equal amount of total energy shows that translational energy is more effective in enhancing the reactivity than vibrational energy of the H–CH
2
CH
3
stretching motion at a relatively lower translational energy, while the reverse is true at a relatively high translational energy. An energy-shifting method is employed to calculate the full-dimensional rate constants. The quantum rate constants agree well with one of the two main experimental measurements, and the activation energy has an excellent agreement with the one calculated using canonical variational transition-state theory. |
doi_str_mv | 10.1039/D1CP04212B |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1CP04212B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D1CP04212B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76B-49e22bc79fb2ededc2122c0a350f8d29655e27703c53e0d9ce482b289d32a3a33</originalsourceid><addsrcrecordid>eNpFkE1KxEAQhRtRcBzdeIJaK9Hq6vz10okzRhhQJPvQ6a5gxCRjOlnkAh7AI3oSFcVZvcdbfDw-Ic4lXklU-vpWZo8YkqTVgVjIMFaBxjQ8_O9JfCxOvH9BRBlJtRBPRdNy4HjHneNuhLfJdOPUgps70zbWgx8nN0Nfw_jMsIFLyIAghxg-3z8g3w8RDGzs2PTdqTiqzavns79cimKzLrI82D7c3Wc328Am8SoINRNVNtF1RezY2e_TZNGoCOvUkY6jiClJUNlIMTptOUypolQ7RUYZpZbi4hdrh977getyNzStGeZSYvkjo9zLUF-SbE4v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-dependent quantum dynamics study of the F + C 2 H 6 → HF + C 2 H 5 reaction</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Gao, Delu ; Wang, Dunyou</creator><creatorcontrib>Gao, Delu ; Wang, Dunyou</creatorcontrib><description>The reaction probabilities, integral cross sections, energy efficiency and rate constants are investigated for the F + C
2
H
6
reaction using the quantum reaction dynamics, wave packet method. The ground-state integral cross section calculated using a six-degree-of-freedom approach is in very good agreement with the quasi-classical trajectory results. We find that the H–CH
2
CH
3
stretching motion has the largest enhancement to reactivity, followed by the H–CH
2
–CH
3
bending motion. However, the stretching motion between CH
2
and CH
3
slightly hinders the reactivity. The energy-form efficacy based on an equal amount of total energy shows that translational energy is more effective in enhancing the reactivity than vibrational energy of the H–CH
2
CH
3
stretching motion at a relatively lower translational energy, while the reverse is true at a relatively high translational energy. An energy-shifting method is employed to calculate the full-dimensional rate constants. The quantum rate constants agree well with one of the two main experimental measurements, and the activation energy has an excellent agreement with the one calculated using canonical variational transition-state theory.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/D1CP04212B</identifier><language>eng</language><ispartof>Physical chemistry chemical physics : PCCP, 2021-12, Vol.23 (47), p.26911-26918</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76B-49e22bc79fb2ededc2122c0a350f8d29655e27703c53e0d9ce482b289d32a3a33</citedby><cites>FETCH-LOGICAL-c76B-49e22bc79fb2ededc2122c0a350f8d29655e27703c53e0d9ce482b289d32a3a33</cites><orcidid>0000-0002-5130-3488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Delu</creatorcontrib><creatorcontrib>Wang, Dunyou</creatorcontrib><title>Time-dependent quantum dynamics study of the F + C 2 H 6 → HF + C 2 H 5 reaction</title><title>Physical chemistry chemical physics : PCCP</title><description>The reaction probabilities, integral cross sections, energy efficiency and rate constants are investigated for the F + C
2
H
6
reaction using the quantum reaction dynamics, wave packet method. The ground-state integral cross section calculated using a six-degree-of-freedom approach is in very good agreement with the quasi-classical trajectory results. We find that the H–CH
2
CH
3
stretching motion has the largest enhancement to reactivity, followed by the H–CH
2
–CH
3
bending motion. However, the stretching motion between CH
2
and CH
3
slightly hinders the reactivity. The energy-form efficacy based on an equal amount of total energy shows that translational energy is more effective in enhancing the reactivity than vibrational energy of the H–CH
2
CH
3
stretching motion at a relatively lower translational energy, while the reverse is true at a relatively high translational energy. An energy-shifting method is employed to calculate the full-dimensional rate constants. The quantum rate constants agree well with one of the two main experimental measurements, and the activation energy has an excellent agreement with the one calculated using canonical variational transition-state theory.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkE1KxEAQhRtRcBzdeIJaK9Hq6vz10okzRhhQJPvQ6a5gxCRjOlnkAh7AI3oSFcVZvcdbfDw-Ic4lXklU-vpWZo8YkqTVgVjIMFaBxjQ8_O9JfCxOvH9BRBlJtRBPRdNy4HjHneNuhLfJdOPUgps70zbWgx8nN0Nfw_jMsIFLyIAghxg-3z8g3w8RDGzs2PTdqTiqzavns79cimKzLrI82D7c3Wc328Am8SoINRNVNtF1RezY2e_TZNGoCOvUkY6jiClJUNlIMTptOUypolQ7RUYZpZbi4hdrh977getyNzStGeZSYvkjo9zLUF-SbE4v</recordid><startdate>20211208</startdate><enddate>20211208</enddate><creator>Gao, Delu</creator><creator>Wang, Dunyou</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5130-3488</orcidid></search><sort><creationdate>20211208</creationdate><title>Time-dependent quantum dynamics study of the F + C 2 H 6 → HF + C 2 H 5 reaction</title><author>Gao, Delu ; Wang, Dunyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76B-49e22bc79fb2ededc2122c0a350f8d29655e27703c53e0d9ce482b289d32a3a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Delu</creatorcontrib><creatorcontrib>Wang, Dunyou</creatorcontrib><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Delu</au><au>Wang, Dunyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-dependent quantum dynamics study of the F + C 2 H 6 → HF + C 2 H 5 reaction</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2021-12-08</date><risdate>2021</risdate><volume>23</volume><issue>47</issue><spage>26911</spage><epage>26918</epage><pages>26911-26918</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The reaction probabilities, integral cross sections, energy efficiency and rate constants are investigated for the F + C
2
H
6
reaction using the quantum reaction dynamics, wave packet method. The ground-state integral cross section calculated using a six-degree-of-freedom approach is in very good agreement with the quasi-classical trajectory results. We find that the H–CH
2
CH
3
stretching motion has the largest enhancement to reactivity, followed by the H–CH
2
–CH
3
bending motion. However, the stretching motion between CH
2
and CH
3
slightly hinders the reactivity. The energy-form efficacy based on an equal amount of total energy shows that translational energy is more effective in enhancing the reactivity than vibrational energy of the H–CH
2
CH
3
stretching motion at a relatively lower translational energy, while the reverse is true at a relatively high translational energy. An energy-shifting method is employed to calculate the full-dimensional rate constants. The quantum rate constants agree well with one of the two main experimental measurements, and the activation energy has an excellent agreement with the one calculated using canonical variational transition-state theory.</abstract><doi>10.1039/D1CP04212B</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5130-3488</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2021-12, Vol.23 (47), p.26911-26918 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1CP04212B |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Time-dependent quantum dynamics study of the F + C 2 H 6 → HF + C 2 H 5 reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-dependent%20quantum%20dynamics%20study%20of%20the%20F%20+%20C%202%20H%206%20%E2%86%92%20HF%20+%20C%202%20H%205%20reaction&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Gao,%20Delu&rft.date=2021-12-08&rft.volume=23&rft.issue=47&rft.spage=26911&rft.epage=26918&rft.pages=26911-26918&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/D1CP04212B&rft_dat=%3Ccrossref%3E10_1039_D1CP04212B%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |