Metallic C 5 N monolayer as an efficient catalyst for accelerating redox kinetics of sulfur in lithium-sulfur batteries

Lithium-sulfur battery is one of the most promising applicants for the next generation of energy storage devices whose commercial applications are impeded by the key issue of the shuttle effect. To overcome this obstacle, various two-dimensional (2D) carbon-based metal-free compounds have been propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-12, Vol.24 (1), p.180-190
Hauptverfasser: Wang, Zhihao, Zeng, Zhihao, Nong, Wei, Yang, Zhen, Qi, Chenze, Qiao, Zhengping, Li, Yan, Wang, Chengxin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue 1
container_start_page 180
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Wang, Zhihao
Zeng, Zhihao
Nong, Wei
Yang, Zhen
Qi, Chenze
Qiao, Zhengping
Li, Yan
Wang, Chengxin
description Lithium-sulfur battery is one of the most promising applicants for the next generation of energy storage devices whose commercial applications are impeded by the key issue of the shuttle effect. To overcome this obstacle, various two-dimensional (2D) carbon-based metal-free compounds have been proposed to serve as anchoring materials for immobilizing soluble lithium polysulfides (LiPs), which however suffer from low electronic conductivity implying unsatisfactory performance for catalyzing sulfur redox. Therefore, we have predicted metallic C N monolayers, possessing hexagonal (H) and orthorhombic (O) phases, exhibiting excellent performance for suppressing the shuttle effect. First-principles simulations demonstrate that O-C N could serve as a bifunctional anchoring material due to its strong adsorption capability to LiPs and excellent catalytic performance for sulfur redox with active sites from both basal plane and zigzag edges. Furthermore, the rate of Li S oxidation over O-C N is fast due to the low energy barrier of 0.93 eV for Li S decomposition. While for H-C N, only N atoms located at the armchair edges can efficiently trap LiPs and boost the formation and dissociation of Li S during discharge and charge processes, respectively. The current work opens an avenue of designing 2D metallic carbon-based anchoring materials for lithium-sulfur batteries, which deserves further experimental research efforts.
doi_str_mv 10.1039/d1cp04192d
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1CP04192D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34878473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c993-80ea17078c17bba24a5f70a420779dd11cd9880cce2ca3f0b09d38e5c34f1b83</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWw4QOQ10gBO3Zqe4lSXlJ5SLCPHHsMhjwq2xH07wm0dDWjmaOrq4PQKSUXlDB1aalZEU5VbvfQlPI5yxSRfH-3i_kEHcX4QQihBWWHaMK4FJILNkVfD5B003iDS1zgR9z2Xd_oNQSsI9YdBue88dAlbPQIrmPCrh-fxkADQSffveEAtv_Gn76D5E3EvcNxaNwQsO9w49O7H9pse6l1ShA8xGN04HQT4WQ7Z-jl5vq1vMuWT7f35dUyM0qxTBLQVBAhDRV1rXOuCyeI5jkRQllLqbFKSjKWyY1mjtREWSahMIw7Wks2Q-ebVBP6GAO4ahV8q8O6oqT6dVctaPn8524xwmcbeDXULdgd-i-L_QBt4mug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metallic C 5 N monolayer as an efficient catalyst for accelerating redox kinetics of sulfur in lithium-sulfur batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Zhihao ; Zeng, Zhihao ; Nong, Wei ; Yang, Zhen ; Qi, Chenze ; Qiao, Zhengping ; Li, Yan ; Wang, Chengxin</creator><creatorcontrib>Wang, Zhihao ; Zeng, Zhihao ; Nong, Wei ; Yang, Zhen ; Qi, Chenze ; Qiao, Zhengping ; Li, Yan ; Wang, Chengxin</creatorcontrib><description>Lithium-sulfur battery is one of the most promising applicants for the next generation of energy storage devices whose commercial applications are impeded by the key issue of the shuttle effect. To overcome this obstacle, various two-dimensional (2D) carbon-based metal-free compounds have been proposed to serve as anchoring materials for immobilizing soluble lithium polysulfides (LiPs), which however suffer from low electronic conductivity implying unsatisfactory performance for catalyzing sulfur redox. Therefore, we have predicted metallic C N monolayers, possessing hexagonal (H) and orthorhombic (O) phases, exhibiting excellent performance for suppressing the shuttle effect. First-principles simulations demonstrate that O-C N could serve as a bifunctional anchoring material due to its strong adsorption capability to LiPs and excellent catalytic performance for sulfur redox with active sites from both basal plane and zigzag edges. Furthermore, the rate of Li S oxidation over O-C N is fast due to the low energy barrier of 0.93 eV for Li S decomposition. While for H-C N, only N atoms located at the armchair edges can efficiently trap LiPs and boost the formation and dissociation of Li S during discharge and charge processes, respectively. The current work opens an avenue of designing 2D metallic carbon-based anchoring materials for lithium-sulfur batteries, which deserves further experimental research efforts.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp04192d</identifier><identifier>PMID: 34878473</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2021-12, Vol.24 (1), p.180-190</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c993-80ea17078c17bba24a5f70a420779dd11cd9880cce2ca3f0b09d38e5c34f1b83</citedby><cites>FETCH-LOGICAL-c993-80ea17078c17bba24a5f70a420779dd11cd9880cce2ca3f0b09d38e5c34f1b83</cites><orcidid>0000-0001-7849-9938 ; 0000-0001-8355-6431 ; 0000-0002-6838-7155 ; 0000-0002-7099-6830 ; 0000-0002-3947-1585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34878473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhihao</creatorcontrib><creatorcontrib>Zeng, Zhihao</creatorcontrib><creatorcontrib>Nong, Wei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Qi, Chenze</creatorcontrib><creatorcontrib>Qiao, Zhengping</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Wang, Chengxin</creatorcontrib><title>Metallic C 5 N monolayer as an efficient catalyst for accelerating redox kinetics of sulfur in lithium-sulfur batteries</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Lithium-sulfur battery is one of the most promising applicants for the next generation of energy storage devices whose commercial applications are impeded by the key issue of the shuttle effect. To overcome this obstacle, various two-dimensional (2D) carbon-based metal-free compounds have been proposed to serve as anchoring materials for immobilizing soluble lithium polysulfides (LiPs), which however suffer from low electronic conductivity implying unsatisfactory performance for catalyzing sulfur redox. Therefore, we have predicted metallic C N monolayers, possessing hexagonal (H) and orthorhombic (O) phases, exhibiting excellent performance for suppressing the shuttle effect. First-principles simulations demonstrate that O-C N could serve as a bifunctional anchoring material due to its strong adsorption capability to LiPs and excellent catalytic performance for sulfur redox with active sites from both basal plane and zigzag edges. Furthermore, the rate of Li S oxidation over O-C N is fast due to the low energy barrier of 0.93 eV for Li S decomposition. While for H-C N, only N atoms located at the armchair edges can efficiently trap LiPs and boost the formation and dissociation of Li S during discharge and charge processes, respectively. The current work opens an avenue of designing 2D metallic carbon-based anchoring materials for lithium-sulfur batteries, which deserves further experimental research efforts.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqWw4QOQ10gBO3Zqe4lSXlJ5SLCPHHsMhjwq2xH07wm0dDWjmaOrq4PQKSUXlDB1aalZEU5VbvfQlPI5yxSRfH-3i_kEHcX4QQihBWWHaMK4FJILNkVfD5B003iDS1zgR9z2Xd_oNQSsI9YdBue88dAlbPQIrmPCrh-fxkADQSffveEAtv_Gn76D5E3EvcNxaNwQsO9w49O7H9pse6l1ShA8xGN04HQT4WQ7Z-jl5vq1vMuWT7f35dUyM0qxTBLQVBAhDRV1rXOuCyeI5jkRQllLqbFKSjKWyY1mjtREWSahMIw7Wks2Q-ebVBP6GAO4ahV8q8O6oqT6dVctaPn8524xwmcbeDXULdgd-i-L_QBt4mug</recordid><startdate>20211222</startdate><enddate>20211222</enddate><creator>Wang, Zhihao</creator><creator>Zeng, Zhihao</creator><creator>Nong, Wei</creator><creator>Yang, Zhen</creator><creator>Qi, Chenze</creator><creator>Qiao, Zhengping</creator><creator>Li, Yan</creator><creator>Wang, Chengxin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7849-9938</orcidid><orcidid>https://orcid.org/0000-0001-8355-6431</orcidid><orcidid>https://orcid.org/0000-0002-6838-7155</orcidid><orcidid>https://orcid.org/0000-0002-7099-6830</orcidid><orcidid>https://orcid.org/0000-0002-3947-1585</orcidid></search><sort><creationdate>20211222</creationdate><title>Metallic C 5 N monolayer as an efficient catalyst for accelerating redox kinetics of sulfur in lithium-sulfur batteries</title><author>Wang, Zhihao ; Zeng, Zhihao ; Nong, Wei ; Yang, Zhen ; Qi, Chenze ; Qiao, Zhengping ; Li, Yan ; Wang, Chengxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c993-80ea17078c17bba24a5f70a420779dd11cd9880cce2ca3f0b09d38e5c34f1b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhihao</creatorcontrib><creatorcontrib>Zeng, Zhihao</creatorcontrib><creatorcontrib>Nong, Wei</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Qi, Chenze</creatorcontrib><creatorcontrib>Qiao, Zhengping</creatorcontrib><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Wang, Chengxin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhihao</au><au>Zeng, Zhihao</au><au>Nong, Wei</au><au>Yang, Zhen</au><au>Qi, Chenze</au><au>Qiao, Zhengping</au><au>Li, Yan</au><au>Wang, Chengxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallic C 5 N monolayer as an efficient catalyst for accelerating redox kinetics of sulfur in lithium-sulfur batteries</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2021-12-22</date><risdate>2021</risdate><volume>24</volume><issue>1</issue><spage>180</spage><epage>190</epage><pages>180-190</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Lithium-sulfur battery is one of the most promising applicants for the next generation of energy storage devices whose commercial applications are impeded by the key issue of the shuttle effect. To overcome this obstacle, various two-dimensional (2D) carbon-based metal-free compounds have been proposed to serve as anchoring materials for immobilizing soluble lithium polysulfides (LiPs), which however suffer from low electronic conductivity implying unsatisfactory performance for catalyzing sulfur redox. Therefore, we have predicted metallic C N monolayers, possessing hexagonal (H) and orthorhombic (O) phases, exhibiting excellent performance for suppressing the shuttle effect. First-principles simulations demonstrate that O-C N could serve as a bifunctional anchoring material due to its strong adsorption capability to LiPs and excellent catalytic performance for sulfur redox with active sites from both basal plane and zigzag edges. Furthermore, the rate of Li S oxidation over O-C N is fast due to the low energy barrier of 0.93 eV for Li S decomposition. While for H-C N, only N atoms located at the armchair edges can efficiently trap LiPs and boost the formation and dissociation of Li S during discharge and charge processes, respectively. The current work opens an avenue of designing 2D metallic carbon-based anchoring materials for lithium-sulfur batteries, which deserves further experimental research efforts.</abstract><cop>England</cop><pmid>34878473</pmid><doi>10.1039/d1cp04192d</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7849-9938</orcidid><orcidid>https://orcid.org/0000-0001-8355-6431</orcidid><orcidid>https://orcid.org/0000-0002-6838-7155</orcidid><orcidid>https://orcid.org/0000-0002-7099-6830</orcidid><orcidid>https://orcid.org/0000-0002-3947-1585</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2021-12, Vol.24 (1), p.180-190
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_D1CP04192D
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Metallic C 5 N monolayer as an efficient catalyst for accelerating redox kinetics of sulfur in lithium-sulfur batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallic%20C%205%20N%20monolayer%20as%20an%20efficient%20catalyst%20for%20accelerating%20redox%20kinetics%20of%20sulfur%20in%20lithium-sulfur%20batteries&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Wang,%20Zhihao&rft.date=2021-12-22&rft.volume=24&rft.issue=1&rft.spage=180&rft.epage=190&rft.pages=180-190&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp04192d&rft_dat=%3Cpubmed_cross%3E34878473%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34878473&rfr_iscdi=true