Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13

The global outbreak of the COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Bat virus RaTG13 and SARS-CoV are also members of the coronavirus family and SARS-CoV caused a world-wide pandemic in 2003. SARS-CoV-2, SARS-CoV and RaTG13 bind to angiotensin-conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-06, Vol.23 (25), p.13926-13933
Hauptverfasser: Li, Zhendong, Zhang, John Z. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13933
container_issue 25
container_start_page 13926
container_title Physical chemistry chemical physics : PCCP
container_volume 23
creator Li, Zhendong
Zhang, John Z. H.
description The global outbreak of the COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Bat virus RaTG13 and SARS-CoV are also members of the coronavirus family and SARS-CoV caused a world-wide pandemic in 2003. SARS-CoV-2, SARS-CoV and RaTG13 bind to angiotensin-converting enzyme 2 (ACE2) through their receptor-binding domain (RBD) of the spike protein. SARS-CoV-2 binds ACE2 with a higher binding affinity than SARS-CoV and RaTG13. Here we performed molecular dynamics simulation of these binding complexes and calculated their binding free energies using a computational alanine scanning method. Our MD simulation and hotspot residue analysis showed that the lower binding affinity of SARS-CoV to ACE2 vs . SARS-CoV-2 to ACE2 can be explained by different hotspot interactions in these two systems. We also found that the lower binding affinity of RaTG13 to ACE2 is mainly due to a mutated residue (D501) which resulted in a less favorable complex formation for binding. We also calculated an important mutation of N501Y in SARS-CoV-2 using both alanine scanning calculation and a thermodynamic integration (TI) method. Both calculations confirmed a significant increase of the binding affinity of the N501Y mutant to ACE2 and explained its molecular mechanism. The present work provides an important theoretical basis for understanding the molecular mechanism in coronavirus spike protein binding to human ACE2.
doi_str_mv 10.1039/d1cp01075a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1CP01075A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542360554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1222039ea23be75c5ae8d3d1fe66783cc1d0ea18884dcc905b9e4721b817d3833</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOKc3_oKANyJ05qNJU-9KnVMYqNv0tqRJOjK7ZibtYP_euskuvDrnwMN7znkAuMZohBFN7zVWG4RRwuQJGOCY0yhFIj499gk_BxchrBBCmGE6AMv3TjatbWVrtwbKRta7YAN0FczyMYGlbbRtlrB1UDnvGrm1vgswbOyXgRvvWmOb8ADn2Wwe5e4zInAbRsexz9NwJhcTTC_BWSXrYK7-6hB8PI0X-XM0fZ285Nk0UkSINsKEkP4PIwktTcIUk0ZoqnFlOE8EVQprZCQWQsRaqRSxMjVxQnApcKKpoHQIbg-5_XHfnQltsbZBmbqWjXFdKAiLCeWIsbhHb_6hK9f53sCe4oLzuF85BHcHSnkXgjdVsfF2Lf2uwKj4dV484vxt7zyjP0r5cOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546866478</pqid></control><display><type>article</type><title>Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Li, Zhendong ; Zhang, John Z. H.</creator><creatorcontrib>Li, Zhendong ; Zhang, John Z. H.</creatorcontrib><description>The global outbreak of the COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Bat virus RaTG13 and SARS-CoV are also members of the coronavirus family and SARS-CoV caused a world-wide pandemic in 2003. SARS-CoV-2, SARS-CoV and RaTG13 bind to angiotensin-converting enzyme 2 (ACE2) through their receptor-binding domain (RBD) of the spike protein. SARS-CoV-2 binds ACE2 with a higher binding affinity than SARS-CoV and RaTG13. Here we performed molecular dynamics simulation of these binding complexes and calculated their binding free energies using a computational alanine scanning method. Our MD simulation and hotspot residue analysis showed that the lower binding affinity of SARS-CoV to ACE2 vs . SARS-CoV-2 to ACE2 can be explained by different hotspot interactions in these two systems. We also found that the lower binding affinity of RaTG13 to ACE2 is mainly due to a mutated residue (D501) which resulted in a less favorable complex formation for binding. We also calculated an important mutation of N501Y in SARS-CoV-2 using both alanine scanning calculation and a thermodynamic integration (TI) method. Both calculations confirmed a significant increase of the binding affinity of the N501Y mutant to ACE2 and explained its molecular mechanism. The present work provides an important theoretical basis for understanding the molecular mechanism in coronavirus spike protein binding to human ACE2.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp01075a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Affinity ; Alanine ; Binding ; Complex formation ; Coronaviruses ; COVID-19 ; Mathematical analysis ; Molecular dynamics ; Mutation ; Pandemics ; Proteins ; Quantitative analysis ; Residues ; Scanning ; Severe acute respiratory syndrome coronavirus 2 ; Viral diseases</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-06, Vol.23 (25), p.13926-13933</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-1222039ea23be75c5ae8d3d1fe66783cc1d0ea18884dcc905b9e4721b817d3833</citedby><cites>FETCH-LOGICAL-c288t-1222039ea23be75c5ae8d3d1fe66783cc1d0ea18884dcc905b9e4721b817d3833</cites><orcidid>0000-0003-2853-7910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Zhendong</creatorcontrib><creatorcontrib>Zhang, John Z. H.</creatorcontrib><title>Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13</title><title>Physical chemistry chemical physics : PCCP</title><description>The global outbreak of the COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Bat virus RaTG13 and SARS-CoV are also members of the coronavirus family and SARS-CoV caused a world-wide pandemic in 2003. SARS-CoV-2, SARS-CoV and RaTG13 bind to angiotensin-converting enzyme 2 (ACE2) through their receptor-binding domain (RBD) of the spike protein. SARS-CoV-2 binds ACE2 with a higher binding affinity than SARS-CoV and RaTG13. Here we performed molecular dynamics simulation of these binding complexes and calculated their binding free energies using a computational alanine scanning method. Our MD simulation and hotspot residue analysis showed that the lower binding affinity of SARS-CoV to ACE2 vs . SARS-CoV-2 to ACE2 can be explained by different hotspot interactions in these two systems. We also found that the lower binding affinity of RaTG13 to ACE2 is mainly due to a mutated residue (D501) which resulted in a less favorable complex formation for binding. We also calculated an important mutation of N501Y in SARS-CoV-2 using both alanine scanning calculation and a thermodynamic integration (TI) method. Both calculations confirmed a significant increase of the binding affinity of the N501Y mutant to ACE2 and explained its molecular mechanism. The present work provides an important theoretical basis for understanding the molecular mechanism in coronavirus spike protein binding to human ACE2.</description><subject>Affinity</subject><subject>Alanine</subject><subject>Binding</subject><subject>Complex formation</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Mutation</subject><subject>Pandemics</subject><subject>Proteins</subject><subject>Quantitative analysis</subject><subject>Residues</subject><subject>Scanning</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viral diseases</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMoOKc3_oKANyJ05qNJU-9KnVMYqNv0tqRJOjK7ZibtYP_euskuvDrnwMN7znkAuMZohBFN7zVWG4RRwuQJGOCY0yhFIj499gk_BxchrBBCmGE6AMv3TjatbWVrtwbKRta7YAN0FczyMYGlbbRtlrB1UDnvGrm1vgswbOyXgRvvWmOb8ADn2Wwe5e4zInAbRsexz9NwJhcTTC_BWSXrYK7-6hB8PI0X-XM0fZ285Nk0UkSINsKEkP4PIwktTcIUk0ZoqnFlOE8EVQprZCQWQsRaqRSxMjVxQnApcKKpoHQIbg-5_XHfnQltsbZBmbqWjXFdKAiLCeWIsbhHb_6hK9f53sCe4oLzuF85BHcHSnkXgjdVsfF2Lf2uwKj4dV484vxt7zyjP0r5cOo</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Li, Zhendong</creator><creator>Zhang, John Z. H.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2853-7910</orcidid></search><sort><creationdate>20210630</creationdate><title>Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13</title><author>Li, Zhendong ; Zhang, John Z. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1222039ea23be75c5ae8d3d1fe66783cc1d0ea18884dcc905b9e4721b817d3833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affinity</topic><topic>Alanine</topic><topic>Binding</topic><topic>Complex formation</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Mutation</topic><topic>Pandemics</topic><topic>Proteins</topic><topic>Quantitative analysis</topic><topic>Residues</topic><topic>Scanning</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhendong</creatorcontrib><creatorcontrib>Zhang, John Z. H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhendong</au><au>Zhang, John Z. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>23</volume><issue>25</issue><spage>13926</spage><epage>13933</epage><pages>13926-13933</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The global outbreak of the COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Bat virus RaTG13 and SARS-CoV are also members of the coronavirus family and SARS-CoV caused a world-wide pandemic in 2003. SARS-CoV-2, SARS-CoV and RaTG13 bind to angiotensin-converting enzyme 2 (ACE2) through their receptor-binding domain (RBD) of the spike protein. SARS-CoV-2 binds ACE2 with a higher binding affinity than SARS-CoV and RaTG13. Here we performed molecular dynamics simulation of these binding complexes and calculated their binding free energies using a computational alanine scanning method. Our MD simulation and hotspot residue analysis showed that the lower binding affinity of SARS-CoV to ACE2 vs . SARS-CoV-2 to ACE2 can be explained by different hotspot interactions in these two systems. We also found that the lower binding affinity of RaTG13 to ACE2 is mainly due to a mutated residue (D501) which resulted in a less favorable complex formation for binding. We also calculated an important mutation of N501Y in SARS-CoV-2 using both alanine scanning calculation and a thermodynamic integration (TI) method. Both calculations confirmed a significant increase of the binding affinity of the N501Y mutant to ACE2 and explained its molecular mechanism. The present work provides an important theoretical basis for understanding the molecular mechanism in coronavirus spike protein binding to human ACE2.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cp01075a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2853-7910</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2021-06, Vol.23 (25), p.13926-13933
issn 1463-9076
1463-9084
language eng
recordid cdi_crossref_primary_10_1039_D1CP01075A
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Affinity
Alanine
Binding
Complex formation
Coronaviruses
COVID-19
Mathematical analysis
Molecular dynamics
Mutation
Pandemics
Proteins
Quantitative analysis
Residues
Scanning
Severe acute respiratory syndrome coronavirus 2
Viral diseases
title Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20ACE2%20binding%20to%20coronavirus%20spike%20proteins:%20SARS-CoV-2%20vs.%20SARS-CoV%20and%20RaTG13&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Li,%20Zhendong&rft.date=2021-06-30&rft.volume=23&rft.issue=25&rft.spage=13926&rft.epage=13933&rft.pages=13926-13933&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp01075a&rft_dat=%3Cproquest_cross%3E2542360554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546866478&rft_id=info:pmid/&rfr_iscdi=true