Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13
The global outbreak of the COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Bat virus RaTG13 and SARS-CoV are also members of the coronavirus family and SARS-CoV caused a world-wide pandemic in 2003. SARS-CoV-2, SARS-CoV and RaTG13 bind to angiotensin-conv...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2021-06, Vol.23 (25), p.13926-13933 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13933 |
---|---|
container_issue | 25 |
container_start_page | 13926 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 23 |
creator | Li, Zhendong Zhang, John Z. H. |
description | The global outbreak of the COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Bat virus RaTG13 and SARS-CoV are also members of the coronavirus family and SARS-CoV caused a world-wide pandemic in 2003. SARS-CoV-2, SARS-CoV and RaTG13 bind to angiotensin-converting enzyme 2 (ACE2) through their receptor-binding domain (RBD) of the spike protein. SARS-CoV-2 binds ACE2 with a higher binding affinity than SARS-CoV and RaTG13. Here we performed molecular dynamics simulation of these binding complexes and calculated their binding free energies using a computational alanine scanning method. Our MD simulation and hotspot residue analysis showed that the lower binding affinity of SARS-CoV to ACE2
vs
. SARS-CoV-2 to ACE2 can be explained by different hotspot interactions in these two systems. We also found that the lower binding affinity of RaTG13 to ACE2 is mainly due to a mutated residue (D501) which resulted in a less favorable complex formation for binding. We also calculated an important mutation of N501Y in SARS-CoV-2 using both alanine scanning calculation and a thermodynamic integration (TI) method. Both calculations confirmed a significant increase of the binding affinity of the N501Y mutant to ACE2 and explained its molecular mechanism. The present work provides an important theoretical basis for understanding the molecular mechanism in coronavirus spike protein binding to human ACE2. |
doi_str_mv | 10.1039/d1cp01075a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D1CP01075A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2542360554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1222039ea23be75c5ae8d3d1fe66783cc1d0ea18884dcc905b9e4721b817d3833</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOKc3_oKANyJ05qNJU-9KnVMYqNv0tqRJOjK7ZibtYP_euskuvDrnwMN7znkAuMZohBFN7zVWG4RRwuQJGOCY0yhFIj499gk_BxchrBBCmGE6AMv3TjatbWVrtwbKRta7YAN0FczyMYGlbbRtlrB1UDnvGrm1vgswbOyXgRvvWmOb8ADn2Wwe5e4zInAbRsexz9NwJhcTTC_BWSXrYK7-6hB8PI0X-XM0fZ285Nk0UkSINsKEkP4PIwktTcIUk0ZoqnFlOE8EVQprZCQWQsRaqRSxMjVxQnApcKKpoHQIbg-5_XHfnQltsbZBmbqWjXFdKAiLCeWIsbhHb_6hK9f53sCe4oLzuF85BHcHSnkXgjdVsfF2Lf2uwKj4dV484vxt7zyjP0r5cOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546866478</pqid></control><display><type>article</type><title>Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Li, Zhendong ; Zhang, John Z. H.</creator><creatorcontrib>Li, Zhendong ; Zhang, John Z. H.</creatorcontrib><description>The global outbreak of the COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Bat virus RaTG13 and SARS-CoV are also members of the coronavirus family and SARS-CoV caused a world-wide pandemic in 2003. SARS-CoV-2, SARS-CoV and RaTG13 bind to angiotensin-converting enzyme 2 (ACE2) through their receptor-binding domain (RBD) of the spike protein. SARS-CoV-2 binds ACE2 with a higher binding affinity than SARS-CoV and RaTG13. Here we performed molecular dynamics simulation of these binding complexes and calculated their binding free energies using a computational alanine scanning method. Our MD simulation and hotspot residue analysis showed that the lower binding affinity of SARS-CoV to ACE2
vs
. SARS-CoV-2 to ACE2 can be explained by different hotspot interactions in these two systems. We also found that the lower binding affinity of RaTG13 to ACE2 is mainly due to a mutated residue (D501) which resulted in a less favorable complex formation for binding. We also calculated an important mutation of N501Y in SARS-CoV-2 using both alanine scanning calculation and a thermodynamic integration (TI) method. Both calculations confirmed a significant increase of the binding affinity of the N501Y mutant to ACE2 and explained its molecular mechanism. The present work provides an important theoretical basis for understanding the molecular mechanism in coronavirus spike protein binding to human ACE2.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp01075a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Affinity ; Alanine ; Binding ; Complex formation ; Coronaviruses ; COVID-19 ; Mathematical analysis ; Molecular dynamics ; Mutation ; Pandemics ; Proteins ; Quantitative analysis ; Residues ; Scanning ; Severe acute respiratory syndrome coronavirus 2 ; Viral diseases</subject><ispartof>Physical chemistry chemical physics : PCCP, 2021-06, Vol.23 (25), p.13926-13933</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-1222039ea23be75c5ae8d3d1fe66783cc1d0ea18884dcc905b9e4721b817d3833</citedby><cites>FETCH-LOGICAL-c288t-1222039ea23be75c5ae8d3d1fe66783cc1d0ea18884dcc905b9e4721b817d3833</cites><orcidid>0000-0003-2853-7910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Zhendong</creatorcontrib><creatorcontrib>Zhang, John Z. H.</creatorcontrib><title>Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13</title><title>Physical chemistry chemical physics : PCCP</title><description>The global outbreak of the COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Bat virus RaTG13 and SARS-CoV are also members of the coronavirus family and SARS-CoV caused a world-wide pandemic in 2003. SARS-CoV-2, SARS-CoV and RaTG13 bind to angiotensin-converting enzyme 2 (ACE2) through their receptor-binding domain (RBD) of the spike protein. SARS-CoV-2 binds ACE2 with a higher binding affinity than SARS-CoV and RaTG13. Here we performed molecular dynamics simulation of these binding complexes and calculated their binding free energies using a computational alanine scanning method. Our MD simulation and hotspot residue analysis showed that the lower binding affinity of SARS-CoV to ACE2
vs
. SARS-CoV-2 to ACE2 can be explained by different hotspot interactions in these two systems. We also found that the lower binding affinity of RaTG13 to ACE2 is mainly due to a mutated residue (D501) which resulted in a less favorable complex formation for binding. We also calculated an important mutation of N501Y in SARS-CoV-2 using both alanine scanning calculation and a thermodynamic integration (TI) method. Both calculations confirmed a significant increase of the binding affinity of the N501Y mutant to ACE2 and explained its molecular mechanism. The present work provides an important theoretical basis for understanding the molecular mechanism in coronavirus spike protein binding to human ACE2.</description><subject>Affinity</subject><subject>Alanine</subject><subject>Binding</subject><subject>Complex formation</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Mutation</subject><subject>Pandemics</subject><subject>Proteins</subject><subject>Quantitative analysis</subject><subject>Residues</subject><subject>Scanning</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viral diseases</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkF1LwzAUhoMoOKc3_oKANyJ05qNJU-9KnVMYqNv0tqRJOjK7ZibtYP_euskuvDrnwMN7znkAuMZohBFN7zVWG4RRwuQJGOCY0yhFIj499gk_BxchrBBCmGE6AMv3TjatbWVrtwbKRta7YAN0FczyMYGlbbRtlrB1UDnvGrm1vgswbOyXgRvvWmOb8ADn2Wwe5e4zInAbRsexz9NwJhcTTC_BWSXrYK7-6hB8PI0X-XM0fZ285Nk0UkSINsKEkP4PIwktTcIUk0ZoqnFlOE8EVQprZCQWQsRaqRSxMjVxQnApcKKpoHQIbg-5_XHfnQltsbZBmbqWjXFdKAiLCeWIsbhHb_6hK9f53sCe4oLzuF85BHcHSnkXgjdVsfF2Lf2uwKj4dV484vxt7zyjP0r5cOo</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Li, Zhendong</creator><creator>Zhang, John Z. H.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2853-7910</orcidid></search><sort><creationdate>20210630</creationdate><title>Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13</title><author>Li, Zhendong ; Zhang, John Z. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1222039ea23be75c5ae8d3d1fe66783cc1d0ea18884dcc905b9e4721b817d3833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affinity</topic><topic>Alanine</topic><topic>Binding</topic><topic>Complex formation</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Mutation</topic><topic>Pandemics</topic><topic>Proteins</topic><topic>Quantitative analysis</topic><topic>Residues</topic><topic>Scanning</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhendong</creatorcontrib><creatorcontrib>Zhang, John Z. H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhendong</au><au>Zhang, John Z. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>23</volume><issue>25</issue><spage>13926</spage><epage>13933</epage><pages>13926-13933</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The global outbreak of the COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Bat virus RaTG13 and SARS-CoV are also members of the coronavirus family and SARS-CoV caused a world-wide pandemic in 2003. SARS-CoV-2, SARS-CoV and RaTG13 bind to angiotensin-converting enzyme 2 (ACE2) through their receptor-binding domain (RBD) of the spike protein. SARS-CoV-2 binds ACE2 with a higher binding affinity than SARS-CoV and RaTG13. Here we performed molecular dynamics simulation of these binding complexes and calculated their binding free energies using a computational alanine scanning method. Our MD simulation and hotspot residue analysis showed that the lower binding affinity of SARS-CoV to ACE2
vs
. SARS-CoV-2 to ACE2 can be explained by different hotspot interactions in these two systems. We also found that the lower binding affinity of RaTG13 to ACE2 is mainly due to a mutated residue (D501) which resulted in a less favorable complex formation for binding. We also calculated an important mutation of N501Y in SARS-CoV-2 using both alanine scanning calculation and a thermodynamic integration (TI) method. Both calculations confirmed a significant increase of the binding affinity of the N501Y mutant to ACE2 and explained its molecular mechanism. The present work provides an important theoretical basis for understanding the molecular mechanism in coronavirus spike protein binding to human ACE2.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1cp01075a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2853-7910</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2021-06, Vol.23 (25), p.13926-13933 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D1CP01075A |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Affinity Alanine Binding Complex formation Coronaviruses COVID-19 Mathematical analysis Molecular dynamics Mutation Pandemics Proteins Quantitative analysis Residues Scanning Severe acute respiratory syndrome coronavirus 2 Viral diseases |
title | Quantitative analysis of ACE2 binding to coronavirus spike proteins: SARS-CoV-2 vs. SARS-CoV and RaTG13 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20ACE2%20binding%20to%20coronavirus%20spike%20proteins:%20SARS-CoV-2%20vs.%20SARS-CoV%20and%20RaTG13&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Li,%20Zhendong&rft.date=2021-06-30&rft.volume=23&rft.issue=25&rft.spage=13926&rft.epage=13933&rft.pages=13926-13933&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp01075a&rft_dat=%3Cproquest_cross%3E2542360554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546866478&rft_id=info:pmid/&rfr_iscdi=true |