Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability

While there has been rapid progress made in the performance of organic photovoltaic (OPV) cells in recent years, the device stability remains a major bottleneck for commercialization. In this work, we blended a stable acceptor (O-IDTBR) with two photostable donors (PTB7-Th and PffBT4T-2OD) having di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-12, Vol.8 (45), p.1692-1699
Hauptverfasser: Yi, Xueping, Ho, Carr Hoi Yi, Gautam, Bhoj, Lei, Lei, Chowdhury, Ashraful Haider, Bahrami, Behzad, Qiao, Qiquan, So, Franky
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1699
container_issue 45
container_start_page 1692
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 8
creator Yi, Xueping
Ho, Carr Hoi Yi
Gautam, Bhoj
Lei, Lei
Chowdhury, Ashraful Haider
Bahrami, Behzad
Qiao, Qiquan
So, Franky
description While there has been rapid progress made in the performance of organic photovoltaic (OPV) cells in recent years, the device stability remains a major bottleneck for commercialization. In this work, we blended a stable acceptor (O-IDTBR) with two photostable donors (PTB7-Th and PffBT4T-2OD) having different polymer crystallinity, and the resulting devices show a significant difference in the OPV degradation rate. The OPV devices employing a highly crystalline polymer PffBT4T-2OD as an active layer show a good resistance against light soaking, maintaining 80% of the initial power conversion efficiency (PCE) up to 100 hours, while the devices employing an amorphous polymer PTB7-Th as an active layer show a significant PCE loss in the initial 20 hours mainly due to a rapid loss of the fill factor. By carrying out a comprehensive analysis of the device degradation mechanisms, we conclude that the origin for the PTB7-Th:O-IDTBR device degradation is the formation of mid-gap states under continuous sunlight illumination, leading to a significant drop in electron mobility. Device simulation revealed that deep traps act as charge recombination centers and increase the trap-assisted recombination rate, lowering the FF and J sc . Organic solar cell shows significantly different degradation rate with different donor polymer crystallinity, even the donors and acceptors are all photostable.
doi_str_mv 10.1039/d0tc03969a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TC03969A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464548171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-6c80e68c570c02747e5b59b9b1b02ea1612b22a74aa226a9741e721f905a291f3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1ye4mm2Op9QMKXup5SdKJbkk3a5I97L83WqlzeefwzDvwIHRNyT0lpXzYkWRycqnO0IyRmhSiLqvz0874JVrEuCd5GsobLmdIr60FkyL2Fg_eTQcI2IQpJuVc13dpwr7Hve8LOzoHAXrAyhgYkg9Yqwg77MOH6juDo3cq34JzePj0yecK3bnccIUurHIRFn85R-9P6-3qpdi8Pb-ulpvClLRJBTcNAd6YWhBDmKgE1LqWWmqqCQNFOWWaMSUqpRjjSoqKgmDUSlIrJqkt5-j22DsE_zVCTO3ej6HPL1tW8aquGipopu6OlAk-xgC2HUJ3UGFqKWl_NLaPZLv61bjM8M0RDtGcuH_N5Tcwem9e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464548171</pqid></control><display><type>article</type><title>Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yi, Xueping ; Ho, Carr Hoi Yi ; Gautam, Bhoj ; Lei, Lei ; Chowdhury, Ashraful Haider ; Bahrami, Behzad ; Qiao, Qiquan ; So, Franky</creator><creatorcontrib>Yi, Xueping ; Ho, Carr Hoi Yi ; Gautam, Bhoj ; Lei, Lei ; Chowdhury, Ashraful Haider ; Bahrami, Behzad ; Qiao, Qiquan ; So, Franky</creatorcontrib><description>While there has been rapid progress made in the performance of organic photovoltaic (OPV) cells in recent years, the device stability remains a major bottleneck for commercialization. In this work, we blended a stable acceptor (O-IDTBR) with two photostable donors (PTB7-Th and PffBT4T-2OD) having different polymer crystallinity, and the resulting devices show a significant difference in the OPV degradation rate. The OPV devices employing a highly crystalline polymer PffBT4T-2OD as an active layer show a good resistance against light soaking, maintaining 80% of the initial power conversion efficiency (PCE) up to 100 hours, while the devices employing an amorphous polymer PTB7-Th as an active layer show a significant PCE loss in the initial 20 hours mainly due to a rapid loss of the fill factor. By carrying out a comprehensive analysis of the device degradation mechanisms, we conclude that the origin for the PTB7-Th:O-IDTBR device degradation is the formation of mid-gap states under continuous sunlight illumination, leading to a significant drop in electron mobility. Device simulation revealed that deep traps act as charge recombination centers and increase the trap-assisted recombination rate, lowering the FF and J sc . Organic solar cell shows significantly different degradation rate with different donor polymer crystallinity, even the donors and acceptors are all photostable.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc03969a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Commercialization ; Crystal structure ; Crystallinity ; Degradation ; Donors (electronic) ; Electron mobility ; Energy conversion efficiency ; Fullerenes ; Photovoltaic cells ; Polymers ; Solar cells</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-12, Vol.8 (45), p.1692-1699</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-6c80e68c570c02747e5b59b9b1b02ea1612b22a74aa226a9741e721f905a291f3</citedby><cites>FETCH-LOGICAL-c318t-6c80e68c570c02747e5b59b9b1b02ea1612b22a74aa226a9741e721f905a291f3</cites><orcidid>0000-0002-0362-1430 ; 0000-0002-8310-677X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yi, Xueping</creatorcontrib><creatorcontrib>Ho, Carr Hoi Yi</creatorcontrib><creatorcontrib>Gautam, Bhoj</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Chowdhury, Ashraful Haider</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><title>Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>While there has been rapid progress made in the performance of organic photovoltaic (OPV) cells in recent years, the device stability remains a major bottleneck for commercialization. In this work, we blended a stable acceptor (O-IDTBR) with two photostable donors (PTB7-Th and PffBT4T-2OD) having different polymer crystallinity, and the resulting devices show a significant difference in the OPV degradation rate. The OPV devices employing a highly crystalline polymer PffBT4T-2OD as an active layer show a good resistance against light soaking, maintaining 80% of the initial power conversion efficiency (PCE) up to 100 hours, while the devices employing an amorphous polymer PTB7-Th as an active layer show a significant PCE loss in the initial 20 hours mainly due to a rapid loss of the fill factor. By carrying out a comprehensive analysis of the device degradation mechanisms, we conclude that the origin for the PTB7-Th:O-IDTBR device degradation is the formation of mid-gap states under continuous sunlight illumination, leading to a significant drop in electron mobility. Device simulation revealed that deep traps act as charge recombination centers and increase the trap-assisted recombination rate, lowering the FF and J sc . Organic solar cell shows significantly different degradation rate with different donor polymer crystallinity, even the donors and acceptors are all photostable.</description><subject>Commercialization</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Degradation</subject><subject>Donors (electronic)</subject><subject>Electron mobility</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Solar cells</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1ye4mm2Op9QMKXup5SdKJbkk3a5I97L83WqlzeefwzDvwIHRNyT0lpXzYkWRycqnO0IyRmhSiLqvz0874JVrEuCd5GsobLmdIr60FkyL2Fg_eTQcI2IQpJuVc13dpwr7Hve8LOzoHAXrAyhgYkg9Yqwg77MOH6juDo3cq34JzePj0yecK3bnccIUurHIRFn85R-9P6-3qpdi8Pb-ulpvClLRJBTcNAd6YWhBDmKgE1LqWWmqqCQNFOWWaMSUqpRjjSoqKgmDUSlIrJqkt5-j22DsE_zVCTO3ej6HPL1tW8aquGipopu6OlAk-xgC2HUJ3UGFqKWl_NLaPZLv61bjM8M0RDtGcuH_N5Tcwem9e</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Yi, Xueping</creator><creator>Ho, Carr Hoi Yi</creator><creator>Gautam, Bhoj</creator><creator>Lei, Lei</creator><creator>Chowdhury, Ashraful Haider</creator><creator>Bahrami, Behzad</creator><creator>Qiao, Qiquan</creator><creator>So, Franky</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0362-1430</orcidid><orcidid>https://orcid.org/0000-0002-8310-677X</orcidid></search><sort><creationdate>20201207</creationdate><title>Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability</title><author>Yi, Xueping ; Ho, Carr Hoi Yi ; Gautam, Bhoj ; Lei, Lei ; Chowdhury, Ashraful Haider ; Bahrami, Behzad ; Qiao, Qiquan ; So, Franky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-6c80e68c570c02747e5b59b9b1b02ea1612b22a74aa226a9741e721f905a291f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Commercialization</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Degradation</topic><topic>Donors (electronic)</topic><topic>Electron mobility</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Xueping</creatorcontrib><creatorcontrib>Ho, Carr Hoi Yi</creatorcontrib><creatorcontrib>Gautam, Bhoj</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Chowdhury, Ashraful Haider</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Xueping</au><au>Ho, Carr Hoi Yi</au><au>Gautam, Bhoj</au><au>Lei, Lei</au><au>Chowdhury, Ashraful Haider</au><au>Bahrami, Behzad</au><au>Qiao, Qiquan</au><au>So, Franky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-12-07</date><risdate>2020</risdate><volume>8</volume><issue>45</issue><spage>1692</spage><epage>1699</epage><pages>1692-1699</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>While there has been rapid progress made in the performance of organic photovoltaic (OPV) cells in recent years, the device stability remains a major bottleneck for commercialization. In this work, we blended a stable acceptor (O-IDTBR) with two photostable donors (PTB7-Th and PffBT4T-2OD) having different polymer crystallinity, and the resulting devices show a significant difference in the OPV degradation rate. The OPV devices employing a highly crystalline polymer PffBT4T-2OD as an active layer show a good resistance against light soaking, maintaining 80% of the initial power conversion efficiency (PCE) up to 100 hours, while the devices employing an amorphous polymer PTB7-Th as an active layer show a significant PCE loss in the initial 20 hours mainly due to a rapid loss of the fill factor. By carrying out a comprehensive analysis of the device degradation mechanisms, we conclude that the origin for the PTB7-Th:O-IDTBR device degradation is the formation of mid-gap states under continuous sunlight illumination, leading to a significant drop in electron mobility. Device simulation revealed that deep traps act as charge recombination centers and increase the trap-assisted recombination rate, lowering the FF and J sc . Organic solar cell shows significantly different degradation rate with different donor polymer crystallinity, even the donors and acceptors are all photostable.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc03969a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0362-1430</orcidid><orcidid>https://orcid.org/0000-0002-8310-677X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-12, Vol.8 (45), p.1692-1699
issn 2050-7526
2050-7534
language eng
recordid cdi_crossref_primary_10_1039_D0TC03969A
source Royal Society Of Chemistry Journals 2008-
subjects Commercialization
Crystal structure
Crystallinity
Degradation
Donors (electronic)
Electron mobility
Energy conversion efficiency
Fullerenes
Photovoltaic cells
Polymers
Solar cells
title Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20polymer%20crystallinity%20on%20non-fullerene%20acceptor%20based%20organic%20solar%20cell%20photostability&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Yi,%20Xueping&rft.date=2020-12-07&rft.volume=8&rft.issue=45&rft.spage=1692&rft.epage=1699&rft.pages=1692-1699&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc03969a&rft_dat=%3Cproquest_cross%3E2464548171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464548171&rft_id=info:pmid/&rfr_iscdi=true