Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability
While there has been rapid progress made in the performance of organic photovoltaic (OPV) cells in recent years, the device stability remains a major bottleneck for commercialization. In this work, we blended a stable acceptor (O-IDTBR) with two photostable donors (PTB7-Th and PffBT4T-2OD) having di...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-12, Vol.8 (45), p.1692-1699 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1699 |
---|---|
container_issue | 45 |
container_start_page | 1692 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 8 |
creator | Yi, Xueping Ho, Carr Hoi Yi Gautam, Bhoj Lei, Lei Chowdhury, Ashraful Haider Bahrami, Behzad Qiao, Qiquan So, Franky |
description | While there has been rapid progress made in the performance of organic photovoltaic (OPV) cells in recent years, the device stability remains a major bottleneck for commercialization. In this work, we blended a stable acceptor (O-IDTBR) with two photostable donors (PTB7-Th and PffBT4T-2OD) having different polymer crystallinity, and the resulting devices show a significant difference in the OPV degradation rate. The OPV devices employing a highly crystalline polymer PffBT4T-2OD as an active layer show a good resistance against light soaking, maintaining 80% of the initial power conversion efficiency (PCE) up to 100 hours, while the devices employing an amorphous polymer PTB7-Th as an active layer show a significant PCE loss in the initial 20 hours mainly due to a rapid loss of the fill factor. By carrying out a comprehensive analysis of the device degradation mechanisms, we conclude that the origin for the PTB7-Th:O-IDTBR device degradation is the formation of mid-gap states under continuous sunlight illumination, leading to a significant drop in electron mobility. Device simulation revealed that deep traps act as charge recombination centers and increase the trap-assisted recombination rate, lowering the FF and
J
sc
.
Organic solar cell shows significantly different degradation rate with different donor polymer crystallinity, even the donors and acceptors are all photostable. |
doi_str_mv | 10.1039/d0tc03969a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TC03969A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2464548171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-6c80e68c570c02747e5b59b9b1b02ea1612b22a74aa226a9741e721f905a291f3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1ye4mm2Op9QMKXup5SdKJbkk3a5I97L83WqlzeefwzDvwIHRNyT0lpXzYkWRycqnO0IyRmhSiLqvz0874JVrEuCd5GsobLmdIr60FkyL2Fg_eTQcI2IQpJuVc13dpwr7Hve8LOzoHAXrAyhgYkg9Yqwg77MOH6juDo3cq34JzePj0yecK3bnccIUurHIRFn85R-9P6-3qpdi8Pb-ulpvClLRJBTcNAd6YWhBDmKgE1LqWWmqqCQNFOWWaMSUqpRjjSoqKgmDUSlIrJqkt5-j22DsE_zVCTO3ej6HPL1tW8aquGipopu6OlAk-xgC2HUJ3UGFqKWl_NLaPZLv61bjM8M0RDtGcuH_N5Tcwem9e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2464548171</pqid></control><display><type>article</type><title>Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yi, Xueping ; Ho, Carr Hoi Yi ; Gautam, Bhoj ; Lei, Lei ; Chowdhury, Ashraful Haider ; Bahrami, Behzad ; Qiao, Qiquan ; So, Franky</creator><creatorcontrib>Yi, Xueping ; Ho, Carr Hoi Yi ; Gautam, Bhoj ; Lei, Lei ; Chowdhury, Ashraful Haider ; Bahrami, Behzad ; Qiao, Qiquan ; So, Franky</creatorcontrib><description>While there has been rapid progress made in the performance of organic photovoltaic (OPV) cells in recent years, the device stability remains a major bottleneck for commercialization. In this work, we blended a stable acceptor (O-IDTBR) with two photostable donors (PTB7-Th and PffBT4T-2OD) having different polymer crystallinity, and the resulting devices show a significant difference in the OPV degradation rate. The OPV devices employing a highly crystalline polymer PffBT4T-2OD as an active layer show a good resistance against light soaking, maintaining 80% of the initial power conversion efficiency (PCE) up to 100 hours, while the devices employing an amorphous polymer PTB7-Th as an active layer show a significant PCE loss in the initial 20 hours mainly due to a rapid loss of the fill factor. By carrying out a comprehensive analysis of the device degradation mechanisms, we conclude that the origin for the PTB7-Th:O-IDTBR device degradation is the formation of mid-gap states under continuous sunlight illumination, leading to a significant drop in electron mobility. Device simulation revealed that deep traps act as charge recombination centers and increase the trap-assisted recombination rate, lowering the FF and
J
sc
.
Organic solar cell shows significantly different degradation rate with different donor polymer crystallinity, even the donors and acceptors are all photostable.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d0tc03969a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Commercialization ; Crystal structure ; Crystallinity ; Degradation ; Donors (electronic) ; Electron mobility ; Energy conversion efficiency ; Fullerenes ; Photovoltaic cells ; Polymers ; Solar cells</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-12, Vol.8 (45), p.1692-1699</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-6c80e68c570c02747e5b59b9b1b02ea1612b22a74aa226a9741e721f905a291f3</citedby><cites>FETCH-LOGICAL-c318t-6c80e68c570c02747e5b59b9b1b02ea1612b22a74aa226a9741e721f905a291f3</cites><orcidid>0000-0002-0362-1430 ; 0000-0002-8310-677X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yi, Xueping</creatorcontrib><creatorcontrib>Ho, Carr Hoi Yi</creatorcontrib><creatorcontrib>Gautam, Bhoj</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Chowdhury, Ashraful Haider</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><title>Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>While there has been rapid progress made in the performance of organic photovoltaic (OPV) cells in recent years, the device stability remains a major bottleneck for commercialization. In this work, we blended a stable acceptor (O-IDTBR) with two photostable donors (PTB7-Th and PffBT4T-2OD) having different polymer crystallinity, and the resulting devices show a significant difference in the OPV degradation rate. The OPV devices employing a highly crystalline polymer PffBT4T-2OD as an active layer show a good resistance against light soaking, maintaining 80% of the initial power conversion efficiency (PCE) up to 100 hours, while the devices employing an amorphous polymer PTB7-Th as an active layer show a significant PCE loss in the initial 20 hours mainly due to a rapid loss of the fill factor. By carrying out a comprehensive analysis of the device degradation mechanisms, we conclude that the origin for the PTB7-Th:O-IDTBR device degradation is the formation of mid-gap states under continuous sunlight illumination, leading to a significant drop in electron mobility. Device simulation revealed that deep traps act as charge recombination centers and increase the trap-assisted recombination rate, lowering the FF and
J
sc
.
Organic solar cell shows significantly different degradation rate with different donor polymer crystallinity, even the donors and acceptors are all photostable.</description><subject>Commercialization</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Degradation</subject><subject>Donors (electronic)</subject><subject>Electron mobility</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Solar cells</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1ye4mm2Op9QMKXup5SdKJbkk3a5I97L83WqlzeefwzDvwIHRNyT0lpXzYkWRycqnO0IyRmhSiLqvz0874JVrEuCd5GsobLmdIr60FkyL2Fg_eTQcI2IQpJuVc13dpwr7Hve8LOzoHAXrAyhgYkg9Yqwg77MOH6juDo3cq34JzePj0yecK3bnccIUurHIRFn85R-9P6-3qpdi8Pb-ulpvClLRJBTcNAd6YWhBDmKgE1LqWWmqqCQNFOWWaMSUqpRjjSoqKgmDUSlIrJqkt5-j22DsE_zVCTO3ej6HPL1tW8aquGipopu6OlAk-xgC2HUJ3UGFqKWl_NLaPZLv61bjM8M0RDtGcuH_N5Tcwem9e</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Yi, Xueping</creator><creator>Ho, Carr Hoi Yi</creator><creator>Gautam, Bhoj</creator><creator>Lei, Lei</creator><creator>Chowdhury, Ashraful Haider</creator><creator>Bahrami, Behzad</creator><creator>Qiao, Qiquan</creator><creator>So, Franky</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0362-1430</orcidid><orcidid>https://orcid.org/0000-0002-8310-677X</orcidid></search><sort><creationdate>20201207</creationdate><title>Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability</title><author>Yi, Xueping ; Ho, Carr Hoi Yi ; Gautam, Bhoj ; Lei, Lei ; Chowdhury, Ashraful Haider ; Bahrami, Behzad ; Qiao, Qiquan ; So, Franky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-6c80e68c570c02747e5b59b9b1b02ea1612b22a74aa226a9741e721f905a291f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Commercialization</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Degradation</topic><topic>Donors (electronic)</topic><topic>Electron mobility</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Xueping</creatorcontrib><creatorcontrib>Ho, Carr Hoi Yi</creatorcontrib><creatorcontrib>Gautam, Bhoj</creatorcontrib><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Chowdhury, Ashraful Haider</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Xueping</au><au>Ho, Carr Hoi Yi</au><au>Gautam, Bhoj</au><au>Lei, Lei</au><au>Chowdhury, Ashraful Haider</au><au>Bahrami, Behzad</au><au>Qiao, Qiquan</au><au>So, Franky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-12-07</date><risdate>2020</risdate><volume>8</volume><issue>45</issue><spage>1692</spage><epage>1699</epage><pages>1692-1699</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>While there has been rapid progress made in the performance of organic photovoltaic (OPV) cells in recent years, the device stability remains a major bottleneck for commercialization. In this work, we blended a stable acceptor (O-IDTBR) with two photostable donors (PTB7-Th and PffBT4T-2OD) having different polymer crystallinity, and the resulting devices show a significant difference in the OPV degradation rate. The OPV devices employing a highly crystalline polymer PffBT4T-2OD as an active layer show a good resistance against light soaking, maintaining 80% of the initial power conversion efficiency (PCE) up to 100 hours, while the devices employing an amorphous polymer PTB7-Th as an active layer show a significant PCE loss in the initial 20 hours mainly due to a rapid loss of the fill factor. By carrying out a comprehensive analysis of the device degradation mechanisms, we conclude that the origin for the PTB7-Th:O-IDTBR device degradation is the formation of mid-gap states under continuous sunlight illumination, leading to a significant drop in electron mobility. Device simulation revealed that deep traps act as charge recombination centers and increase the trap-assisted recombination rate, lowering the FF and
J
sc
.
Organic solar cell shows significantly different degradation rate with different donor polymer crystallinity, even the donors and acceptors are all photostable.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0tc03969a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0362-1430</orcidid><orcidid>https://orcid.org/0000-0002-8310-677X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-12, Vol.8 (45), p.1692-1699 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0TC03969A |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Commercialization Crystal structure Crystallinity Degradation Donors (electronic) Electron mobility Energy conversion efficiency Fullerenes Photovoltaic cells Polymers Solar cells |
title | Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20polymer%20crystallinity%20on%20non-fullerene%20acceptor%20based%20organic%20solar%20cell%20photostability&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Yi,%20Xueping&rft.date=2020-12-07&rft.volume=8&rft.issue=45&rft.spage=1692&rft.epage=1699&rft.pages=1692-1699&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d0tc03969a&rft_dat=%3Cproquest_cross%3E2464548171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2464548171&rft_id=info:pmid/&rfr_iscdi=true |