Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material
Potassium-ion batteries (PIBs) are considered as a promising candidate for large-scale energy storage applications due to the abundant potassium resources. In this work, a hybrid of porous Sn nanospheres incorporated in N-doped carbon nanofiber frameworks (Sn/N-CNFs) was fabricated via electrospinni...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-03, Vol.9 (9), p.574-575 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 575 |
---|---|
container_issue | 9 |
container_start_page | 574 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Li, Chao Bi, An Tong Chen, Hong Li Pei, Ya Ru Zhao, Ming Yang, Chun Cheng Jiang, Qing |
description | Potassium-ion batteries (PIBs) are considered as a promising candidate for large-scale energy storage applications due to the abundant potassium resources. In this work, a hybrid of porous Sn nanospheres incorporated in N-doped carbon nanofiber frameworks (Sn/N-CNFs) was fabricated
via
electrospinning and a subsequent carbonization process. As a PIB anode, Sn/N-CNFs exhibit superior cycling stability (198.0 mA h g
−1
at 1 A g
−1
after 3000 cycles, and the corresponding capacity retention rate is as high as 88.4%), outperforming other Sn-based materials. Such an excellent performance is ascribed to the synergistic effects of porous Sn nanospheres composed of ultra-small nanoparticles as well as to the unique and interconnected network of N-CNFs, which provide sufficient space for the volume expansion/contraction of Sn, supply efficient electrolyte diffusion paths, offer short K
+
diffusion distance, suppress the agglomeration of Sn nanoparticles, enhance the electronic conductivity, and thus facilitate the electron/ion transport.
A hybrid of porous Sn nanospheres encapsulated in N-doped carbon nanofiber frameworks (Sn/N-CNFs) was constructed, and the as-fabricated Sn/N-CNFs exhibited a super-long cycle life, outperforming other Sn-based materials. |
doi_str_mv | 10.1039/d0ta11501k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA11501K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499014510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-2f0285a08aa89fbddfc8b4bda994385ca78a7ef89a50ab098a539d6f77c460693</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWGov3oWAN2HtZD-TY6mfWBS0npfZTaJbt5s1yR7qX290pQ4DM8P8ePAeIacMLhkkYi7BI2MZsI8DMokhg6hIRX643zk_JjPnNhCKA-RCTMjXM_rGdNhSqVzz1lGjaW-sGRx96WiHnXH9u7LKzR8jaXolaY22MuNLN5WyjmLojg6ttxg5j1WrgoRH55phGwVxWqH3yu4CZaSiWwxHg-0JOdLYOjX7m1PyenO9Xt5Fq6fb--ViFdUJ4z6KNcQ8Q-CIXOhKSl3zKq0kCpEmPKux4FgozQVmgBUIjlkiZK6Lok7zYDKZkvNRt7fmc1DOlxsz2GDZlXEqBLA0C_FNycVI1dY4Z5Uue9ts0e5KBuVPvOUVrBe_8T4E-GyErav33H_8yTfkWXjO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499014510</pqid></control><display><type>article</type><title>Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Chao ; Bi, An Tong ; Chen, Hong Li ; Pei, Ya Ru ; Zhao, Ming ; Yang, Chun Cheng ; Jiang, Qing</creator><creatorcontrib>Li, Chao ; Bi, An Tong ; Chen, Hong Li ; Pei, Ya Ru ; Zhao, Ming ; Yang, Chun Cheng ; Jiang, Qing</creatorcontrib><description>Potassium-ion batteries (PIBs) are considered as a promising candidate for large-scale energy storage applications due to the abundant potassium resources. In this work, a hybrid of porous Sn nanospheres incorporated in N-doped carbon nanofiber frameworks (Sn/N-CNFs) was fabricated
via
electrospinning and a subsequent carbonization process. As a PIB anode, Sn/N-CNFs exhibit superior cycling stability (198.0 mA h g
−1
at 1 A g
−1
after 3000 cycles, and the corresponding capacity retention rate is as high as 88.4%), outperforming other Sn-based materials. Such an excellent performance is ascribed to the synergistic effects of porous Sn nanospheres composed of ultra-small nanoparticles as well as to the unique and interconnected network of N-CNFs, which provide sufficient space for the volume expansion/contraction of Sn, supply efficient electrolyte diffusion paths, offer short K
+
diffusion distance, suppress the agglomeration of Sn nanoparticles, enhance the electronic conductivity, and thus facilitate the electron/ion transport.
A hybrid of porous Sn nanospheres encapsulated in N-doped carbon nanofiber frameworks (Sn/N-CNFs) was constructed, and the as-fabricated Sn/N-CNFs exhibited a super-long cycle life, outperforming other Sn-based materials.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta11501k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Carbon fibers ; Contraction ; Diffusion ; Electrode materials ; Energy storage ; Ion transport ; Nanofibers ; Nanoparticles ; Nanospheres ; Potassium ; Rechargeable batteries ; Storage batteries ; Synergistic effect</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-03, Vol.9 (9), p.574-575</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-2f0285a08aa89fbddfc8b4bda994385ca78a7ef89a50ab098a539d6f77c460693</citedby><cites>FETCH-LOGICAL-c318t-2f0285a08aa89fbddfc8b4bda994385ca78a7ef89a50ab098a539d6f77c460693</cites><orcidid>0000-0002-2888-8860 ; 0000-0003-0660-596X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Bi, An Tong</creatorcontrib><creatorcontrib>Chen, Hong Li</creatorcontrib><creatorcontrib>Pei, Ya Ru</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Yang, Chun Cheng</creatorcontrib><creatorcontrib>Jiang, Qing</creatorcontrib><title>Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Potassium-ion batteries (PIBs) are considered as a promising candidate for large-scale energy storage applications due to the abundant potassium resources. In this work, a hybrid of porous Sn nanospheres incorporated in N-doped carbon nanofiber frameworks (Sn/N-CNFs) was fabricated
via
electrospinning and a subsequent carbonization process. As a PIB anode, Sn/N-CNFs exhibit superior cycling stability (198.0 mA h g
−1
at 1 A g
−1
after 3000 cycles, and the corresponding capacity retention rate is as high as 88.4%), outperforming other Sn-based materials. Such an excellent performance is ascribed to the synergistic effects of porous Sn nanospheres composed of ultra-small nanoparticles as well as to the unique and interconnected network of N-CNFs, which provide sufficient space for the volume expansion/contraction of Sn, supply efficient electrolyte diffusion paths, offer short K
+
diffusion distance, suppress the agglomeration of Sn nanoparticles, enhance the electronic conductivity, and thus facilitate the electron/ion transport.
A hybrid of porous Sn nanospheres encapsulated in N-doped carbon nanofiber frameworks (Sn/N-CNFs) was constructed, and the as-fabricated Sn/N-CNFs exhibited a super-long cycle life, outperforming other Sn-based materials.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon fibers</subject><subject>Contraction</subject><subject>Diffusion</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Ion transport</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><subject>Storage batteries</subject><subject>Synergistic effect</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWGov3oWAN2HtZD-TY6mfWBS0npfZTaJbt5s1yR7qX290pQ4DM8P8ePAeIacMLhkkYi7BI2MZsI8DMokhg6hIRX643zk_JjPnNhCKA-RCTMjXM_rGdNhSqVzz1lGjaW-sGRx96WiHnXH9u7LKzR8jaXolaY22MuNLN5WyjmLojg6ttxg5j1WrgoRH55phGwVxWqH3yu4CZaSiWwxHg-0JOdLYOjX7m1PyenO9Xt5Fq6fb--ViFdUJ4z6KNcQ8Q-CIXOhKSl3zKq0kCpEmPKux4FgozQVmgBUIjlkiZK6Lok7zYDKZkvNRt7fmc1DOlxsz2GDZlXEqBLA0C_FNycVI1dY4Z5Uue9ts0e5KBuVPvOUVrBe_8T4E-GyErav33H_8yTfkWXjO</recordid><startdate>20210309</startdate><enddate>20210309</enddate><creator>Li, Chao</creator><creator>Bi, An Tong</creator><creator>Chen, Hong Li</creator><creator>Pei, Ya Ru</creator><creator>Zhao, Ming</creator><creator>Yang, Chun Cheng</creator><creator>Jiang, Qing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2888-8860</orcidid><orcidid>https://orcid.org/0000-0003-0660-596X</orcidid></search><sort><creationdate>20210309</creationdate><title>Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material</title><author>Li, Chao ; Bi, An Tong ; Chen, Hong Li ; Pei, Ya Ru ; Zhao, Ming ; Yang, Chun Cheng ; Jiang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-2f0285a08aa89fbddfc8b4bda994385ca78a7ef89a50ab098a539d6f77c460693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon fibers</topic><topic>Contraction</topic><topic>Diffusion</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Ion transport</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><topic>Storage batteries</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Bi, An Tong</creatorcontrib><creatorcontrib>Chen, Hong Li</creatorcontrib><creatorcontrib>Pei, Ya Ru</creatorcontrib><creatorcontrib>Zhao, Ming</creatorcontrib><creatorcontrib>Yang, Chun Cheng</creatorcontrib><creatorcontrib>Jiang, Qing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chao</au><au>Bi, An Tong</au><au>Chen, Hong Li</au><au>Pei, Ya Ru</au><au>Zhao, Ming</au><au>Yang, Chun Cheng</au><au>Jiang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-03-09</date><risdate>2021</risdate><volume>9</volume><issue>9</issue><spage>574</spage><epage>575</epage><pages>574-575</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Potassium-ion batteries (PIBs) are considered as a promising candidate for large-scale energy storage applications due to the abundant potassium resources. In this work, a hybrid of porous Sn nanospheres incorporated in N-doped carbon nanofiber frameworks (Sn/N-CNFs) was fabricated
via
electrospinning and a subsequent carbonization process. As a PIB anode, Sn/N-CNFs exhibit superior cycling stability (198.0 mA h g
−1
at 1 A g
−1
after 3000 cycles, and the corresponding capacity retention rate is as high as 88.4%), outperforming other Sn-based materials. Such an excellent performance is ascribed to the synergistic effects of porous Sn nanospheres composed of ultra-small nanoparticles as well as to the unique and interconnected network of N-CNFs, which provide sufficient space for the volume expansion/contraction of Sn, supply efficient electrolyte diffusion paths, offer short K
+
diffusion distance, suppress the agglomeration of Sn nanoparticles, enhance the electronic conductivity, and thus facilitate the electron/ion transport.
A hybrid of porous Sn nanospheres encapsulated in N-doped carbon nanofiber frameworks (Sn/N-CNFs) was constructed, and the as-fabricated Sn/N-CNFs exhibited a super-long cycle life, outperforming other Sn-based materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta11501k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2888-8860</orcidid><orcidid>https://orcid.org/0000-0003-0660-596X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-03, Vol.9 (9), p.574-575 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0TA11501K |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anodes Batteries Carbon fibers Contraction Diffusion Electrode materials Energy storage Ion transport Nanofibers Nanoparticles Nanospheres Potassium Rechargeable batteries Storage batteries Synergistic effect |
title | Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20porous%20Sn%20nanospheres/N-doped%20carbon%20nanofibers%20as%20an%20ultra-stable%20potassium-ion%20battery%20anode%20material&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Li,%20Chao&rft.date=2021-03-09&rft.volume=9&rft.issue=9&rft.spage=574&rft.epage=575&rft.pages=574-575&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta11501k&rft_dat=%3Cproquest_cross%3E2499014510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499014510&rft_id=info:pmid/&rfr_iscdi=true |