A hierarchical carbon nanotube forest supported metal phosphide electrode for efficient overall water splitting
Transition metal phosphides (TMPs) have become one type of promising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalyst in alkaline medium; however, the low amount of metal active sites and the poor electronic conductivity of TMPs have become the limiting factors for achi...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (2), p.115-1158 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1158 |
---|---|
container_issue | 2 |
container_start_page | 115 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Wang, Zuohui Wei, Chengyu Zhu, Xuebing Wang, Xiaobing He, Jinling Zhao, Yong |
description | Transition metal phosphides (TMPs) have become one type of promising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalyst in alkaline medium; however, the low amount of metal active sites and the poor electronic conductivity of TMPs have become the limiting factors for achieving high-performance TMP based electrocatalysts. Herein, a hierarchical carbon nanotube (CNT) forest was used to load TMP materials to form self-supported electrodes (NiCoP-CNT@NiCo/CP and NiFeP-CNT@NiCo/CP), guaranteeing catalytic electrodes with a high amount of metal sites and excellent electronic conductivity. As expected, the electrodes display low overpotentials of 82 and 230 mV at a current density of 10 mA cm
−2
for the HER and OER in alkaline solutions, respectively. Moreover, the overall water electrolyzer assembled with NiCoP-CNT@NiCo/CP as a cathode and NiFeP-CNT@NiCo/CP as an anode exhibits superior electrolysis performance (1.58 V/10 mA cm
−2
). The remarkable performance is attributed to the unique hierarchical CNT forest architecture of the as-prepared catalytic electrodes and the synergistic effect between TMP nanoparticles and CNTs.
Metal phosphides on self-supportive CNT forest materials with a hierarchical branched architecture have abundant active sites and excellent electrical conductivity, providing an effective strategy for preparing efficient OER and HER electrodes. |
doi_str_mv | 10.1039/d0ta10964a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA10964A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478788886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-e55a8768bcbae17e611aec8bb4dc2682c90300a26a871a9103a173670c3e30613</originalsourceid><addsrcrecordid>eNpF0E1LxDAQBuAgCi7rXrwLAW9CddJ00_RY1k9Y8LKeS5pObZZuU5NU8d8bd2Wdy8zhYYZ5CblkcMuAF3cNBMWgEJk6IbMUlpDkWSFOj7OU52Th_RZiSQBRFDNiS9oZdMrpzmjVU61cbQc6qMGGqUbaWoc-UD-No3UBG7rDENnYWT92pkGKPergbLOnFNvWaINDoPYzbu17-qUCOurH3oRghvcLctaq3uPir8_J2-PDZvWcrF-fXlblOtGcyZDgcqlkLmSta4UsR8GYQi3rOmt0KmSqC-AAKhVRMVXE9xXLuchBc-QgGJ-T68Pe0dmPKb5Qbe3khniySrNc5jKWiOrmoLSz3jtsq9GZnXLfFYPqN9PqHjblPtMy4qsDdl4f3X_m_AdVA3Sm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478788886</pqid></control><display><type>article</type><title>A hierarchical carbon nanotube forest supported metal phosphide electrode for efficient overall water splitting</title><source>Royal Society Of Chemistry Journals</source><creator>Wang, Zuohui ; Wei, Chengyu ; Zhu, Xuebing ; Wang, Xiaobing ; He, Jinling ; Zhao, Yong</creator><creatorcontrib>Wang, Zuohui ; Wei, Chengyu ; Zhu, Xuebing ; Wang, Xiaobing ; He, Jinling ; Zhao, Yong</creatorcontrib><description>Transition metal phosphides (TMPs) have become one type of promising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalyst in alkaline medium; however, the low amount of metal active sites and the poor electronic conductivity of TMPs have become the limiting factors for achieving high-performance TMP based electrocatalysts. Herein, a hierarchical carbon nanotube (CNT) forest was used to load TMP materials to form self-supported electrodes (NiCoP-CNT@NiCo/CP and NiFeP-CNT@NiCo/CP), guaranteeing catalytic electrodes with a high amount of metal sites and excellent electronic conductivity. As expected, the electrodes display low overpotentials of 82 and 230 mV at a current density of 10 mA cm
−2
for the HER and OER in alkaline solutions, respectively. Moreover, the overall water electrolyzer assembled with NiCoP-CNT@NiCo/CP as a cathode and NiFeP-CNT@NiCo/CP as an anode exhibits superior electrolysis performance (1.58 V/10 mA cm
−2
). The remarkable performance is attributed to the unique hierarchical CNT forest architecture of the as-prepared catalytic electrodes and the synergistic effect between TMP nanoparticles and CNTs.
Metal phosphides on self-supportive CNT forest materials with a hierarchical branched architecture have abundant active sites and excellent electrical conductivity, providing an effective strategy for preparing efficient OER and HER electrodes.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta10964a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon nanotubes ; Catalysts ; Conductivity ; Electrocatalysts ; Electrodes ; Electrolysis ; Hydrogen evolution reactions ; Intermetallic compounds ; Metals ; Nanoparticles ; Oxygen evolution reactions ; Phosphides ; Synergistic effect ; Transition metals ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (2), p.115-1158</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-e55a8768bcbae17e611aec8bb4dc2682c90300a26a871a9103a173670c3e30613</citedby><cites>FETCH-LOGICAL-c318t-e55a8768bcbae17e611aec8bb4dc2682c90300a26a871a9103a173670c3e30613</cites><orcidid>0000-0002-5039-4576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Zuohui</creatorcontrib><creatorcontrib>Wei, Chengyu</creatorcontrib><creatorcontrib>Zhu, Xuebing</creatorcontrib><creatorcontrib>Wang, Xiaobing</creatorcontrib><creatorcontrib>He, Jinling</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><title>A hierarchical carbon nanotube forest supported metal phosphide electrode for efficient overall water splitting</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Transition metal phosphides (TMPs) have become one type of promising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalyst in alkaline medium; however, the low amount of metal active sites and the poor electronic conductivity of TMPs have become the limiting factors for achieving high-performance TMP based electrocatalysts. Herein, a hierarchical carbon nanotube (CNT) forest was used to load TMP materials to form self-supported electrodes (NiCoP-CNT@NiCo/CP and NiFeP-CNT@NiCo/CP), guaranteeing catalytic electrodes with a high amount of metal sites and excellent electronic conductivity. As expected, the electrodes display low overpotentials of 82 and 230 mV at a current density of 10 mA cm
−2
for the HER and OER in alkaline solutions, respectively. Moreover, the overall water electrolyzer assembled with NiCoP-CNT@NiCo/CP as a cathode and NiFeP-CNT@NiCo/CP as an anode exhibits superior electrolysis performance (1.58 V/10 mA cm
−2
). The remarkable performance is attributed to the unique hierarchical CNT forest architecture of the as-prepared catalytic electrodes and the synergistic effect between TMP nanoparticles and CNTs.
Metal phosphides on self-supportive CNT forest materials with a hierarchical branched architecture have abundant active sites and excellent electrical conductivity, providing an effective strategy for preparing efficient OER and HER electrodes.</description><subject>Carbon nanotubes</subject><subject>Catalysts</subject><subject>Conductivity</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Hydrogen evolution reactions</subject><subject>Intermetallic compounds</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Oxygen evolution reactions</subject><subject>Phosphides</subject><subject>Synergistic effect</subject><subject>Transition metals</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LxDAQBuAgCi7rXrwLAW9CddJ00_RY1k9Y8LKeS5pObZZuU5NU8d8bd2Wdy8zhYYZ5CblkcMuAF3cNBMWgEJk6IbMUlpDkWSFOj7OU52Th_RZiSQBRFDNiS9oZdMrpzmjVU61cbQc6qMGGqUbaWoc-UD-No3UBG7rDENnYWT92pkGKPergbLOnFNvWaINDoPYzbu17-qUCOurH3oRghvcLctaq3uPir8_J2-PDZvWcrF-fXlblOtGcyZDgcqlkLmSta4UsR8GYQi3rOmt0KmSqC-AAKhVRMVXE9xXLuchBc-QgGJ-T68Pe0dmPKb5Qbe3khniySrNc5jKWiOrmoLSz3jtsq9GZnXLfFYPqN9PqHjblPtMy4qsDdl4f3X_m_AdVA3Sm</recordid><startdate>20210119</startdate><enddate>20210119</enddate><creator>Wang, Zuohui</creator><creator>Wei, Chengyu</creator><creator>Zhu, Xuebing</creator><creator>Wang, Xiaobing</creator><creator>He, Jinling</creator><creator>Zhao, Yong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5039-4576</orcidid></search><sort><creationdate>20210119</creationdate><title>A hierarchical carbon nanotube forest supported metal phosphide electrode for efficient overall water splitting</title><author>Wang, Zuohui ; Wei, Chengyu ; Zhu, Xuebing ; Wang, Xiaobing ; He, Jinling ; Zhao, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-e55a8768bcbae17e611aec8bb4dc2682c90300a26a871a9103a173670c3e30613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon nanotubes</topic><topic>Catalysts</topic><topic>Conductivity</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Hydrogen evolution reactions</topic><topic>Intermetallic compounds</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Oxygen evolution reactions</topic><topic>Phosphides</topic><topic>Synergistic effect</topic><topic>Transition metals</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zuohui</creatorcontrib><creatorcontrib>Wei, Chengyu</creatorcontrib><creatorcontrib>Zhu, Xuebing</creatorcontrib><creatorcontrib>Wang, Xiaobing</creatorcontrib><creatorcontrib>He, Jinling</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zuohui</au><au>Wei, Chengyu</au><au>Zhu, Xuebing</au><au>Wang, Xiaobing</au><au>He, Jinling</au><au>Zhao, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hierarchical carbon nanotube forest supported metal phosphide electrode for efficient overall water splitting</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-01-19</date><risdate>2021</risdate><volume>9</volume><issue>2</issue><spage>115</spage><epage>1158</epage><pages>115-1158</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Transition metal phosphides (TMPs) have become one type of promising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalyst in alkaline medium; however, the low amount of metal active sites and the poor electronic conductivity of TMPs have become the limiting factors for achieving high-performance TMP based electrocatalysts. Herein, a hierarchical carbon nanotube (CNT) forest was used to load TMP materials to form self-supported electrodes (NiCoP-CNT@NiCo/CP and NiFeP-CNT@NiCo/CP), guaranteeing catalytic electrodes with a high amount of metal sites and excellent electronic conductivity. As expected, the electrodes display low overpotentials of 82 and 230 mV at a current density of 10 mA cm
−2
for the HER and OER in alkaline solutions, respectively. Moreover, the overall water electrolyzer assembled with NiCoP-CNT@NiCo/CP as a cathode and NiFeP-CNT@NiCo/CP as an anode exhibits superior electrolysis performance (1.58 V/10 mA cm
−2
). The remarkable performance is attributed to the unique hierarchical CNT forest architecture of the as-prepared catalytic electrodes and the synergistic effect between TMP nanoparticles and CNTs.
Metal phosphides on self-supportive CNT forest materials with a hierarchical branched architecture have abundant active sites and excellent electrical conductivity, providing an effective strategy for preparing efficient OER and HER electrodes.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta10964a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5039-4576</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (2), p.115-1158 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0TA10964A |
source | Royal Society Of Chemistry Journals |
subjects | Carbon nanotubes Catalysts Conductivity Electrocatalysts Electrodes Electrolysis Hydrogen evolution reactions Intermetallic compounds Metals Nanoparticles Oxygen evolution reactions Phosphides Synergistic effect Transition metals Water splitting |
title | A hierarchical carbon nanotube forest supported metal phosphide electrode for efficient overall water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hierarchical%20carbon%20nanotube%20forest%20supported%20metal%20phosphide%20electrode%20for%20efficient%20overall%20water%20splitting&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Zuohui&rft.date=2021-01-19&rft.volume=9&rft.issue=2&rft.spage=115&rft.epage=1158&rft.pages=115-1158&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta10964a&rft_dat=%3Cproquest_cross%3E2478788886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478788886&rft_id=info:pmid/&rfr_iscdi=true |