Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification

High Ni-low Co layered oxides are considered as the most promising next generation cathode materials for high energy density lithium ion batteries in order to fulfil the demand of 300 miles of driving range per charge, longer service life and cost-effectiveness for their application in electric vehi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-10, Vol.8 (4), p.2136-21316
Hauptverfasser: Jamil, Sidra, Wang, Gang, Yang, Li, Xie, Xin, Cao, Shuang, Liu, Hong, Chang, Baobao, Wang, Xianyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21316
container_issue 4
container_start_page 2136
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Jamil, Sidra
Wang, Gang
Yang, Li
Xie, Xin
Cao, Shuang
Liu, Hong
Chang, Baobao
Wang, Xianyou
description High Ni-low Co layered oxides are considered as the most promising next generation cathode materials for high energy density lithium ion batteries in order to fulfil the demand of 300 miles of driving range per charge, longer service life and cost-effectiveness for their application in electric vehicles (EVs). However, a low content of Co and Mn leads to mechanical damage, chemical instability and structural degradation. Herein, single and dual modification is investigated on high Ni-low Co LiNi 0.94 Co 0.03 Mn 0.03 O 2 (NCM94) by boron doping and boron orthophosphate (BPO 4 ) surface coating via a wet chemical strategy. Boron doping can effectively mitigate the anisotropic stress by suppressing the H2-H3 phase transition, reduce the generation of microcracks and further enhance the electrochemical kinetics owing to the strong B-O bond. Moreover, since BPO 4 is a good ionic conductor, as a surface coating it can reduce electrolytic erosion of the layered oxide cathode material as well as facilitate Li + diffusion. Therefore, the dual modified sample delivers a discharge capacity of 255 mA h g −1 at 0.1C and exhibits an outstanding capacity retention of 91% at 0.5C after 100 cycles while unmodified NCM94 can only retain 66.17% of its initial discharge capacity. In addition, B-NCM@BP exhibits superior rate performance at a high C-rate (10C). As a consequence, the dual modification strategy effectively protects the particle core as well as the surface which may help to deliver high discharge capacity along with improved cycling stability for the application of high Ni low Co cathodes in EVs. Dual modification can effectively stabilize layered structure, improve cycling stability, amend reaction kinetics and facilitate Li + transport for the application of high Ni cathodes in EVs.
doi_str_mv 10.1039/d0ta07965k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA07965K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452936548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6e184ce0d2ffb16cba3f7d2f11cb45525b703fbae84fe0416123f21eb68ba4943</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EElXphTuSETekgF9xkmNVHkVUcKCcIzuxG5c0DrYj6L_HUFRu7GV2tZ9mpAHgFKMrjGhxXaMgUFbw9O0AjAhKUZKxgh_u9zw_BhPv1yhOjhAvihFoXoa-d8p7063gnCRzCvtGeAWDE503wdgOmg42ZtXAJ5O09gPOLGzFVjlVQ_tpagUrERobdSOCcka0UG5hPUTd2NpoE9_R5QQcadF6NfnVMXi9u13O5sni-f5hNl0kFWUsJFzhnFUK1URriXklBdVZPDCuJEtTksoMUS2FyplWiGGOCdUEK8lzKVjB6Bhc7Hx7Z98H5UO5toPrYmRJWEoKylOWR-pyR1XOeu-ULntnNsJtS4zK7zLLG7Sc_pT5GOHzHex8tef-yi77Wkfm7D-GfgHCJHyJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452936548</pqid></control><display><type>article</type><title>Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Jamil, Sidra ; Wang, Gang ; Yang, Li ; Xie, Xin ; Cao, Shuang ; Liu, Hong ; Chang, Baobao ; Wang, Xianyou</creator><creatorcontrib>Jamil, Sidra ; Wang, Gang ; Yang, Li ; Xie, Xin ; Cao, Shuang ; Liu, Hong ; Chang, Baobao ; Wang, Xianyou</creatorcontrib><description>High Ni-low Co layered oxides are considered as the most promising next generation cathode materials for high energy density lithium ion batteries in order to fulfil the demand of 300 miles of driving range per charge, longer service life and cost-effectiveness for their application in electric vehicles (EVs). However, a low content of Co and Mn leads to mechanical damage, chemical instability and structural degradation. Herein, single and dual modification is investigated on high Ni-low Co LiNi 0.94 Co 0.03 Mn 0.03 O 2 (NCM94) by boron doping and boron orthophosphate (BPO 4 ) surface coating via a wet chemical strategy. Boron doping can effectively mitigate the anisotropic stress by suppressing the H2-H3 phase transition, reduce the generation of microcracks and further enhance the electrochemical kinetics owing to the strong B-O bond. Moreover, since BPO 4 is a good ionic conductor, as a surface coating it can reduce electrolytic erosion of the layered oxide cathode material as well as facilitate Li + diffusion. Therefore, the dual modified sample delivers a discharge capacity of 255 mA h g −1 at 0.1C and exhibits an outstanding capacity retention of 91% at 0.5C after 100 cycles while unmodified NCM94 can only retain 66.17% of its initial discharge capacity. In addition, B-NCM@BP exhibits superior rate performance at a high C-rate (10C). As a consequence, the dual modification strategy effectively protects the particle core as well as the surface which may help to deliver high discharge capacity along with improved cycling stability for the application of high Ni low Co cathodes in EVs. Dual modification can effectively stabilize layered structure, improve cycling stability, amend reaction kinetics and facilitate Li + transport for the application of high Ni cathodes in EVs.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta07965k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Boron ; Cathodes ; Chemical damage ; Conductors ; Diffusion layers ; Discharge ; Doping ; Electric vehicles ; Electrochemistry ; Electrode materials ; Flux density ; Lithium ; Lithium-ion batteries ; Microcracks ; Orthophosphate ; Phase transitions ; Rechargeable batteries ; Service life ; Structural damage ; Structural stability</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-10, Vol.8 (4), p.2136-21316</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6e184ce0d2ffb16cba3f7d2f11cb45525b703fbae84fe0416123f21eb68ba4943</citedby><cites>FETCH-LOGICAL-c344t-6e184ce0d2ffb16cba3f7d2f11cb45525b703fbae84fe0416123f21eb68ba4943</cites><orcidid>0000-0001-8888-6405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27925,27926</link.rule.ids></links><search><creatorcontrib>Jamil, Sidra</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Cao, Shuang</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Chang, Baobao</creatorcontrib><creatorcontrib>Wang, Xianyou</creatorcontrib><title>Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>High Ni-low Co layered oxides are considered as the most promising next generation cathode materials for high energy density lithium ion batteries in order to fulfil the demand of 300 miles of driving range per charge, longer service life and cost-effectiveness for their application in electric vehicles (EVs). However, a low content of Co and Mn leads to mechanical damage, chemical instability and structural degradation. Herein, single and dual modification is investigated on high Ni-low Co LiNi 0.94 Co 0.03 Mn 0.03 O 2 (NCM94) by boron doping and boron orthophosphate (BPO 4 ) surface coating via a wet chemical strategy. Boron doping can effectively mitigate the anisotropic stress by suppressing the H2-H3 phase transition, reduce the generation of microcracks and further enhance the electrochemical kinetics owing to the strong B-O bond. Moreover, since BPO 4 is a good ionic conductor, as a surface coating it can reduce electrolytic erosion of the layered oxide cathode material as well as facilitate Li + diffusion. Therefore, the dual modified sample delivers a discharge capacity of 255 mA h g −1 at 0.1C and exhibits an outstanding capacity retention of 91% at 0.5C after 100 cycles while unmodified NCM94 can only retain 66.17% of its initial discharge capacity. In addition, B-NCM@BP exhibits superior rate performance at a high C-rate (10C). As a consequence, the dual modification strategy effectively protects the particle core as well as the surface which may help to deliver high discharge capacity along with improved cycling stability for the application of high Ni low Co cathodes in EVs. Dual modification can effectively stabilize layered structure, improve cycling stability, amend reaction kinetics and facilitate Li + transport for the application of high Ni cathodes in EVs.</description><subject>Batteries</subject><subject>Boron</subject><subject>Cathodes</subject><subject>Chemical damage</subject><subject>Conductors</subject><subject>Diffusion layers</subject><subject>Discharge</subject><subject>Doping</subject><subject>Electric vehicles</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Flux density</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Microcracks</subject><subject>Orthophosphate</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Service life</subject><subject>Structural damage</subject><subject>Structural stability</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EElXphTuSETekgF9xkmNVHkVUcKCcIzuxG5c0DrYj6L_HUFRu7GV2tZ9mpAHgFKMrjGhxXaMgUFbw9O0AjAhKUZKxgh_u9zw_BhPv1yhOjhAvihFoXoa-d8p7063gnCRzCvtGeAWDE503wdgOmg42ZtXAJ5O09gPOLGzFVjlVQ_tpagUrERobdSOCcka0UG5hPUTd2NpoE9_R5QQcadF6NfnVMXi9u13O5sni-f5hNl0kFWUsJFzhnFUK1URriXklBdVZPDCuJEtTksoMUS2FyplWiGGOCdUEK8lzKVjB6Bhc7Hx7Z98H5UO5toPrYmRJWEoKylOWR-pyR1XOeu-ULntnNsJtS4zK7zLLG7Sc_pT5GOHzHex8tef-yi77Wkfm7D-GfgHCJHyJ</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Jamil, Sidra</creator><creator>Wang, Gang</creator><creator>Yang, Li</creator><creator>Xie, Xin</creator><creator>Cao, Shuang</creator><creator>Liu, Hong</creator><creator>Chang, Baobao</creator><creator>Wang, Xianyou</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8888-6405</orcidid></search><sort><creationdate>20201028</creationdate><title>Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification</title><author>Jamil, Sidra ; Wang, Gang ; Yang, Li ; Xie, Xin ; Cao, Shuang ; Liu, Hong ; Chang, Baobao ; Wang, Xianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6e184ce0d2ffb16cba3f7d2f11cb45525b703fbae84fe0416123f21eb68ba4943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Boron</topic><topic>Cathodes</topic><topic>Chemical damage</topic><topic>Conductors</topic><topic>Diffusion layers</topic><topic>Discharge</topic><topic>Doping</topic><topic>Electric vehicles</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Flux density</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Microcracks</topic><topic>Orthophosphate</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Service life</topic><topic>Structural damage</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamil, Sidra</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Cao, Shuang</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Chang, Baobao</creatorcontrib><creatorcontrib>Wang, Xianyou</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamil, Sidra</au><au>Wang, Gang</au><au>Yang, Li</au><au>Xie, Xin</au><au>Cao, Shuang</au><au>Liu, Hong</au><au>Chang, Baobao</au><au>Wang, Xianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-10-28</date><risdate>2020</risdate><volume>8</volume><issue>4</issue><spage>2136</spage><epage>21316</epage><pages>2136-21316</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>High Ni-low Co layered oxides are considered as the most promising next generation cathode materials for high energy density lithium ion batteries in order to fulfil the demand of 300 miles of driving range per charge, longer service life and cost-effectiveness for their application in electric vehicles (EVs). However, a low content of Co and Mn leads to mechanical damage, chemical instability and structural degradation. Herein, single and dual modification is investigated on high Ni-low Co LiNi 0.94 Co 0.03 Mn 0.03 O 2 (NCM94) by boron doping and boron orthophosphate (BPO 4 ) surface coating via a wet chemical strategy. Boron doping can effectively mitigate the anisotropic stress by suppressing the H2-H3 phase transition, reduce the generation of microcracks and further enhance the electrochemical kinetics owing to the strong B-O bond. Moreover, since BPO 4 is a good ionic conductor, as a surface coating it can reduce electrolytic erosion of the layered oxide cathode material as well as facilitate Li + diffusion. Therefore, the dual modified sample delivers a discharge capacity of 255 mA h g −1 at 0.1C and exhibits an outstanding capacity retention of 91% at 0.5C after 100 cycles while unmodified NCM94 can only retain 66.17% of its initial discharge capacity. In addition, B-NCM@BP exhibits superior rate performance at a high C-rate (10C). As a consequence, the dual modification strategy effectively protects the particle core as well as the surface which may help to deliver high discharge capacity along with improved cycling stability for the application of high Ni low Co cathodes in EVs. Dual modification can effectively stabilize layered structure, improve cycling stability, amend reaction kinetics and facilitate Li + transport for the application of high Ni cathodes in EVs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta07965k</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8888-6405</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-10, Vol.8 (4), p.2136-21316
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D0TA07965K
source Royal Society Of Chemistry Journals 2008-
subjects Batteries
Boron
Cathodes
Chemical damage
Conductors
Diffusion layers
Discharge
Doping
Electric vehicles
Electrochemistry
Electrode materials
Flux density
Lithium
Lithium-ion batteries
Microcracks
Orthophosphate
Phase transitions
Rechargeable batteries
Service life
Structural damage
Structural stability
title Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressing%20H2-H3%20phase%20transition%20in%20high%20Ni-low%20Co%20layered%20oxide%20cathode%20material%20by%20dual%20modification&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Jamil,%20Sidra&rft.date=2020-10-28&rft.volume=8&rft.issue=4&rft.spage=2136&rft.epage=21316&rft.pages=2136-21316&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta07965k&rft_dat=%3Cproquest_cross%3E2452936548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452936548&rft_id=info:pmid/&rfr_iscdi=true