High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode

Chloride ion batteries (CIBs) are an example of a promising new emerging rechargeable battery technology, that exhibits large theoretical volumetric energy density performance and good safety. However, unsatisfactory capacity and poor cycling lifetime of the cathode currently hinder the development...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (25), p.12548-12555
Hauptverfasser: Yin, Qing, Luo, Jianeng, Zhang, Jian, Zheng, Lirong, Cui, Guoqing, Han, Jingbin, O'Hare, Dermot
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12555
container_issue 25
container_start_page 12548
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Yin, Qing
Luo, Jianeng
Zhang, Jian
Zheng, Lirong
Cui, Guoqing
Han, Jingbin
O'Hare, Dermot
description Chloride ion batteries (CIBs) are an example of a promising new emerging rechargeable battery technology, that exhibits large theoretical volumetric energy density performance and good safety. However, unsatisfactory capacity and poor cycling lifetime of the cathode currently hinder the development of CIBs. Herein, we report the use of an Ni 2+ Fe 3+ -based layered double hydroxide (LDH) intercalated by chloride ions as a promising cathode material for CIBs. [Ni 2 Fe(OH) 6 ]Cl·1.37H 2 O (NiFe-Cl LDH) exhibits a high maximum capacity of 350.6 mA h g −1 and a long lifetime of over 800 cycles (at 101.1 mA h g −1 ) at a current density of 100 mA g −1 , which is superior to most currently reported CIB cathodes. In situ X-ray absorption near-edge structure (XANES) and ex situ X-ray photoelectron spectroscopy (XPS) reveal the valency changes of the Fe 2+ /Fe 3+ and Ni 2+ /Ni 3+ redox pairs within the metal hydroxide layers of the LDH during electrochemcial cycling. In situ XRD reveals that 2D anion diffusion within the LDH results in only ∼3% structural change. Oxygen K-edge soft X-ray absorption spectroscopy (SXAS) reveals the oxygen atoms within the MO 6 octahedra reversibly participate in the electrochemical reaction. In view of the extensive chemical variation, low-cost, and ease-of-preparation of LDH-based materials we regard LDHs as a promising materials platform for application as cathode materials in chloride ion batteries. NiFe-Cl layered double hydroxide (LDH) is proposed as a high-capacity and long lifetime cathode material for chloride ion batteries (CIBs), which delivers a maximum capacity of 350.6 mA h g −1 and a long lifetime of 800 cycles.
doi_str_mv 10.1039/d0ta04290k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA04290K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418756283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-5c5a3e87f852377db2bd5491433cc559f9b0564b6928a2753d7d03fddd2952593</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQFXdiRjNgQAccfiT1WhVJEBUuZI8cfjUtaBzuRyL8npahs3HI3PHcnvQBcpOguRUTca9RKRLFAH0dghBFDSU5FdnyYOT8F4xjXaCiOUCbECJi5W1VJY4L1YSO3ytzC2m9XsHbWtG5joKpqH5w20PktLGXbmtDDLrrBSPjqZiaZ1rCWvQlGQ-27sjaw6nXwX7slJdvKa3MOTqysoxn_9jPwPntcTufJ4u3peTpZJIrSrE2YYpIYnlvOMMlzXeJSMypSSohSjAkrSsQyWmYCc4lzRnSuEbFaaywYZoKcgev93Sb4z87Etlj7LmyHlwWmKc9ZhjkZ1M1eqeBjDMYWTXAbGfoiRcUuyeIBLSc_Sb4M-GqPQ1QH95d00Wg7mMv_DPkG0xJ6oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418756283</pqid></control><display><type>article</type><title>High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yin, Qing ; Luo, Jianeng ; Zhang, Jian ; Zheng, Lirong ; Cui, Guoqing ; Han, Jingbin ; O'Hare, Dermot</creator><creatorcontrib>Yin, Qing ; Luo, Jianeng ; Zhang, Jian ; Zheng, Lirong ; Cui, Guoqing ; Han, Jingbin ; O'Hare, Dermot</creatorcontrib><description>Chloride ion batteries (CIBs) are an example of a promising new emerging rechargeable battery technology, that exhibits large theoretical volumetric energy density performance and good safety. However, unsatisfactory capacity and poor cycling lifetime of the cathode currently hinder the development of CIBs. Herein, we report the use of an Ni 2+ Fe 3+ -based layered double hydroxide (LDH) intercalated by chloride ions as a promising cathode material for CIBs. [Ni 2 Fe(OH) 6 ]Cl·1.37H 2 O (NiFe-Cl LDH) exhibits a high maximum capacity of 350.6 mA h g −1 and a long lifetime of over 800 cycles (at 101.1 mA h g −1 ) at a current density of 100 mA g −1 , which is superior to most currently reported CIB cathodes. In situ X-ray absorption near-edge structure (XANES) and ex situ X-ray photoelectron spectroscopy (XPS) reveal the valency changes of the Fe 2+ /Fe 3+ and Ni 2+ /Ni 3+ redox pairs within the metal hydroxide layers of the LDH during electrochemcial cycling. In situ XRD reveals that 2D anion diffusion within the LDH results in only ∼3% structural change. Oxygen K-edge soft X-ray absorption spectroscopy (SXAS) reveals the oxygen atoms within the MO 6 octahedra reversibly participate in the electrochemical reaction. In view of the extensive chemical variation, low-cost, and ease-of-preparation of LDH-based materials we regard LDHs as a promising materials platform for application as cathode materials in chloride ion batteries. NiFe-Cl layered double hydroxide (LDH) is proposed as a high-capacity and long lifetime cathode material for chloride ion batteries (CIBs), which delivers a maximum capacity of 350.6 mA h g −1 and a long lifetime of 800 cycles.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta04290k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Batteries ; Cathode rays ; Cathodes ; Chloride ; Chloride ions ; Chlorides ; Cycles ; Electrochemistry ; Electrode materials ; Ferric ions ; Flux density ; Hydroxides ; Intermetallic compounds ; Iron ; Iron compounds ; Nickel compounds ; Oxygen ; Oxygen atoms ; Photoelectron spectroscopy ; Photoelectrons ; Rechargeable batteries ; Soft x rays ; Spectrum analysis ; Valency ; X ray absorption ; X ray photoelectron spectroscopy ; X-ray absorption spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (25), p.12548-12555</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-5c5a3e87f852377db2bd5491433cc559f9b0564b6928a2753d7d03fddd2952593</citedby><cites>FETCH-LOGICAL-c446t-5c5a3e87f852377db2bd5491433cc559f9b0564b6928a2753d7d03fddd2952593</cites><orcidid>0000-0001-8054-8751 ; 0000-0003-0888-6769 ; 0000-0003-1237-9508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Yin, Qing</creatorcontrib><creatorcontrib>Luo, Jianeng</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Cui, Guoqing</creatorcontrib><creatorcontrib>Han, Jingbin</creatorcontrib><creatorcontrib>O'Hare, Dermot</creatorcontrib><title>High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Chloride ion batteries (CIBs) are an example of a promising new emerging rechargeable battery technology, that exhibits large theoretical volumetric energy density performance and good safety. However, unsatisfactory capacity and poor cycling lifetime of the cathode currently hinder the development of CIBs. Herein, we report the use of an Ni 2+ Fe 3+ -based layered double hydroxide (LDH) intercalated by chloride ions as a promising cathode material for CIBs. [Ni 2 Fe(OH) 6 ]Cl·1.37H 2 O (NiFe-Cl LDH) exhibits a high maximum capacity of 350.6 mA h g −1 and a long lifetime of over 800 cycles (at 101.1 mA h g −1 ) at a current density of 100 mA g −1 , which is superior to most currently reported CIB cathodes. In situ X-ray absorption near-edge structure (XANES) and ex situ X-ray photoelectron spectroscopy (XPS) reveal the valency changes of the Fe 2+ /Fe 3+ and Ni 2+ /Ni 3+ redox pairs within the metal hydroxide layers of the LDH during electrochemcial cycling. In situ XRD reveals that 2D anion diffusion within the LDH results in only ∼3% structural change. Oxygen K-edge soft X-ray absorption spectroscopy (SXAS) reveals the oxygen atoms within the MO 6 octahedra reversibly participate in the electrochemical reaction. In view of the extensive chemical variation, low-cost, and ease-of-preparation of LDH-based materials we regard LDHs as a promising materials platform for application as cathode materials in chloride ion batteries. NiFe-Cl layered double hydroxide (LDH) is proposed as a high-capacity and long lifetime cathode material for chloride ion batteries (CIBs), which delivers a maximum capacity of 350.6 mA h g −1 and a long lifetime of 800 cycles.</description><subject>Absorption spectroscopy</subject><subject>Batteries</subject><subject>Cathode rays</subject><subject>Cathodes</subject><subject>Chloride</subject><subject>Chloride ions</subject><subject>Chlorides</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Ferric ions</subject><subject>Flux density</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>Nickel compounds</subject><subject>Oxygen</subject><subject>Oxygen atoms</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Rechargeable batteries</subject><subject>Soft x rays</subject><subject>Spectrum analysis</subject><subject>Valency</subject><subject>X ray absorption</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray absorption spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQFXdiRjNgQAccfiT1WhVJEBUuZI8cfjUtaBzuRyL8npahs3HI3PHcnvQBcpOguRUTca9RKRLFAH0dghBFDSU5FdnyYOT8F4xjXaCiOUCbECJi5W1VJY4L1YSO3ytzC2m9XsHbWtG5joKpqH5w20PktLGXbmtDDLrrBSPjqZiaZ1rCWvQlGQ-27sjaw6nXwX7slJdvKa3MOTqysoxn_9jPwPntcTufJ4u3peTpZJIrSrE2YYpIYnlvOMMlzXeJSMypSSohSjAkrSsQyWmYCc4lzRnSuEbFaaywYZoKcgev93Sb4z87Etlj7LmyHlwWmKc9ZhjkZ1M1eqeBjDMYWTXAbGfoiRcUuyeIBLSc_Sb4M-GqPQ1QH95d00Wg7mMv_DPkG0xJ6oA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yin, Qing</creator><creator>Luo, Jianeng</creator><creator>Zhang, Jian</creator><creator>Zheng, Lirong</creator><creator>Cui, Guoqing</creator><creator>Han, Jingbin</creator><creator>O'Hare, Dermot</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8054-8751</orcidid><orcidid>https://orcid.org/0000-0003-0888-6769</orcidid><orcidid>https://orcid.org/0000-0003-1237-9508</orcidid></search><sort><creationdate>20200101</creationdate><title>High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode</title><author>Yin, Qing ; Luo, Jianeng ; Zhang, Jian ; Zheng, Lirong ; Cui, Guoqing ; Han, Jingbin ; O'Hare, Dermot</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-5c5a3e87f852377db2bd5491433cc559f9b0564b6928a2753d7d03fddd2952593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectroscopy</topic><topic>Batteries</topic><topic>Cathode rays</topic><topic>Cathodes</topic><topic>Chloride</topic><topic>Chloride ions</topic><topic>Chlorides</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Ferric ions</topic><topic>Flux density</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>Nickel compounds</topic><topic>Oxygen</topic><topic>Oxygen atoms</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Rechargeable batteries</topic><topic>Soft x rays</topic><topic>Spectrum analysis</topic><topic>Valency</topic><topic>X ray absorption</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Qing</creatorcontrib><creatorcontrib>Luo, Jianeng</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Cui, Guoqing</creatorcontrib><creatorcontrib>Han, Jingbin</creatorcontrib><creatorcontrib>O'Hare, Dermot</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Qing</au><au>Luo, Jianeng</au><au>Zhang, Jian</au><au>Zheng, Lirong</au><au>Cui, Guoqing</au><au>Han, Jingbin</au><au>O'Hare, Dermot</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>25</issue><spage>12548</spage><epage>12555</epage><pages>12548-12555</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Chloride ion batteries (CIBs) are an example of a promising new emerging rechargeable battery technology, that exhibits large theoretical volumetric energy density performance and good safety. However, unsatisfactory capacity and poor cycling lifetime of the cathode currently hinder the development of CIBs. Herein, we report the use of an Ni 2+ Fe 3+ -based layered double hydroxide (LDH) intercalated by chloride ions as a promising cathode material for CIBs. [Ni 2 Fe(OH) 6 ]Cl·1.37H 2 O (NiFe-Cl LDH) exhibits a high maximum capacity of 350.6 mA h g −1 and a long lifetime of over 800 cycles (at 101.1 mA h g −1 ) at a current density of 100 mA g −1 , which is superior to most currently reported CIB cathodes. In situ X-ray absorption near-edge structure (XANES) and ex situ X-ray photoelectron spectroscopy (XPS) reveal the valency changes of the Fe 2+ /Fe 3+ and Ni 2+ /Ni 3+ redox pairs within the metal hydroxide layers of the LDH during electrochemcial cycling. In situ XRD reveals that 2D anion diffusion within the LDH results in only ∼3% structural change. Oxygen K-edge soft X-ray absorption spectroscopy (SXAS) reveals the oxygen atoms within the MO 6 octahedra reversibly participate in the electrochemical reaction. In view of the extensive chemical variation, low-cost, and ease-of-preparation of LDH-based materials we regard LDHs as a promising materials platform for application as cathode materials in chloride ion batteries. NiFe-Cl layered double hydroxide (LDH) is proposed as a high-capacity and long lifetime cathode material for chloride ion batteries (CIBs), which delivers a maximum capacity of 350.6 mA h g −1 and a long lifetime of 800 cycles.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta04290k</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8054-8751</orcidid><orcidid>https://orcid.org/0000-0003-0888-6769</orcidid><orcidid>https://orcid.org/0000-0003-1237-9508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (25), p.12548-12555
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D0TA04290K
source Royal Society Of Chemistry Journals 2008-
subjects Absorption spectroscopy
Batteries
Cathode rays
Cathodes
Chloride
Chloride ions
Chlorides
Cycles
Electrochemistry
Electrode materials
Ferric ions
Flux density
Hydroxides
Intermetallic compounds
Iron
Iron compounds
Nickel compounds
Oxygen
Oxygen atoms
Photoelectron spectroscopy
Photoelectrons
Rechargeable batteries
Soft x rays
Spectrum analysis
Valency
X ray absorption
X ray photoelectron spectroscopy
X-ray absorption spectroscopy
title High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance,%20long%20lifetime%20chloride%20ion%20battery%20using%20a%20NiFe-Cl%20layered%20double%20hydroxide%20cathode&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Yin,%20Qing&rft.date=2020-01-01&rft.volume=8&rft.issue=25&rft.spage=12548&rft.epage=12555&rft.pages=12548-12555&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta04290k&rft_dat=%3Cproquest_cross%3E2418756283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418756283&rft_id=info:pmid/&rfr_iscdi=true