High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode
Chloride ion batteries (CIBs) are an example of a promising new emerging rechargeable battery technology, that exhibits large theoretical volumetric energy density performance and good safety. However, unsatisfactory capacity and poor cycling lifetime of the cathode currently hinder the development...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (25), p.12548-12555 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12555 |
---|---|
container_issue | 25 |
container_start_page | 12548 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Yin, Qing Luo, Jianeng Zhang, Jian Zheng, Lirong Cui, Guoqing Han, Jingbin O'Hare, Dermot |
description | Chloride ion batteries (CIBs) are an example of a promising new emerging rechargeable battery technology, that exhibits large theoretical volumetric energy density performance and good safety. However, unsatisfactory capacity and poor cycling lifetime of the cathode currently hinder the development of CIBs. Herein, we report the use of an Ni
2+
Fe
3+
-based layered double hydroxide (LDH) intercalated by chloride ions as a promising cathode material for CIBs. [Ni
2
Fe(OH)
6
]Cl·1.37H
2
O (NiFe-Cl LDH) exhibits a high maximum capacity of 350.6 mA h g
−1
and a long lifetime of over 800 cycles (at 101.1 mA h g
−1
) at a current density of 100 mA g
−1
, which is superior to most currently reported CIB cathodes.
In situ
X-ray absorption near-edge structure (XANES) and
ex situ
X-ray photoelectron spectroscopy (XPS) reveal the valency changes of the Fe
2+
/Fe
3+
and Ni
2+
/Ni
3+
redox pairs within the metal hydroxide layers of the LDH during electrochemcial cycling.
In situ
XRD reveals that 2D anion diffusion within the LDH results in only ∼3% structural change. Oxygen K-edge soft X-ray absorption spectroscopy (SXAS) reveals the oxygen atoms within the MO
6
octahedra reversibly participate in the electrochemical reaction. In view of the extensive chemical variation, low-cost, and ease-of-preparation of LDH-based materials we regard LDHs as a promising materials platform for application as cathode materials in chloride ion batteries.
NiFe-Cl layered double hydroxide (LDH) is proposed as a high-capacity and long lifetime cathode material for chloride ion batteries (CIBs), which delivers a maximum capacity of 350.6 mA h g
−1
and a long lifetime of 800 cycles. |
doi_str_mv | 10.1039/d0ta04290k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA04290K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418756283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-5c5a3e87f852377db2bd5491433cc559f9b0564b6928a2753d7d03fddd2952593</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQFXdiRjNgQAccfiT1WhVJEBUuZI8cfjUtaBzuRyL8npahs3HI3PHcnvQBcpOguRUTca9RKRLFAH0dghBFDSU5FdnyYOT8F4xjXaCiOUCbECJi5W1VJY4L1YSO3ytzC2m9XsHbWtG5joKpqH5w20PktLGXbmtDDLrrBSPjqZiaZ1rCWvQlGQ-27sjaw6nXwX7slJdvKa3MOTqysoxn_9jPwPntcTufJ4u3peTpZJIrSrE2YYpIYnlvOMMlzXeJSMypSSohSjAkrSsQyWmYCc4lzRnSuEbFaaywYZoKcgev93Sb4z87Etlj7LmyHlwWmKc9ZhjkZ1M1eqeBjDMYWTXAbGfoiRcUuyeIBLSc_Sb4M-GqPQ1QH95d00Wg7mMv_DPkG0xJ6oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418756283</pqid></control><display><type>article</type><title>High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yin, Qing ; Luo, Jianeng ; Zhang, Jian ; Zheng, Lirong ; Cui, Guoqing ; Han, Jingbin ; O'Hare, Dermot</creator><creatorcontrib>Yin, Qing ; Luo, Jianeng ; Zhang, Jian ; Zheng, Lirong ; Cui, Guoqing ; Han, Jingbin ; O'Hare, Dermot</creatorcontrib><description>Chloride ion batteries (CIBs) are an example of a promising new emerging rechargeable battery technology, that exhibits large theoretical volumetric energy density performance and good safety. However, unsatisfactory capacity and poor cycling lifetime of the cathode currently hinder the development of CIBs. Herein, we report the use of an Ni
2+
Fe
3+
-based layered double hydroxide (LDH) intercalated by chloride ions as a promising cathode material for CIBs. [Ni
2
Fe(OH)
6
]Cl·1.37H
2
O (NiFe-Cl LDH) exhibits a high maximum capacity of 350.6 mA h g
−1
and a long lifetime of over 800 cycles (at 101.1 mA h g
−1
) at a current density of 100 mA g
−1
, which is superior to most currently reported CIB cathodes.
In situ
X-ray absorption near-edge structure (XANES) and
ex situ
X-ray photoelectron spectroscopy (XPS) reveal the valency changes of the Fe
2+
/Fe
3+
and Ni
2+
/Ni
3+
redox pairs within the metal hydroxide layers of the LDH during electrochemcial cycling.
In situ
XRD reveals that 2D anion diffusion within the LDH results in only ∼3% structural change. Oxygen K-edge soft X-ray absorption spectroscopy (SXAS) reveals the oxygen atoms within the MO
6
octahedra reversibly participate in the electrochemical reaction. In view of the extensive chemical variation, low-cost, and ease-of-preparation of LDH-based materials we regard LDHs as a promising materials platform for application as cathode materials in chloride ion batteries.
NiFe-Cl layered double hydroxide (LDH) is proposed as a high-capacity and long lifetime cathode material for chloride ion batteries (CIBs), which delivers a maximum capacity of 350.6 mA h g
−1
and a long lifetime of 800 cycles.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta04290k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Batteries ; Cathode rays ; Cathodes ; Chloride ; Chloride ions ; Chlorides ; Cycles ; Electrochemistry ; Electrode materials ; Ferric ions ; Flux density ; Hydroxides ; Intermetallic compounds ; Iron ; Iron compounds ; Nickel compounds ; Oxygen ; Oxygen atoms ; Photoelectron spectroscopy ; Photoelectrons ; Rechargeable batteries ; Soft x rays ; Spectrum analysis ; Valency ; X ray absorption ; X ray photoelectron spectroscopy ; X-ray absorption spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (25), p.12548-12555</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-5c5a3e87f852377db2bd5491433cc559f9b0564b6928a2753d7d03fddd2952593</citedby><cites>FETCH-LOGICAL-c446t-5c5a3e87f852377db2bd5491433cc559f9b0564b6928a2753d7d03fddd2952593</cites><orcidid>0000-0001-8054-8751 ; 0000-0003-0888-6769 ; 0000-0003-1237-9508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Yin, Qing</creatorcontrib><creatorcontrib>Luo, Jianeng</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Cui, Guoqing</creatorcontrib><creatorcontrib>Han, Jingbin</creatorcontrib><creatorcontrib>O'Hare, Dermot</creatorcontrib><title>High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Chloride ion batteries (CIBs) are an example of a promising new emerging rechargeable battery technology, that exhibits large theoretical volumetric energy density performance and good safety. However, unsatisfactory capacity and poor cycling lifetime of the cathode currently hinder the development of CIBs. Herein, we report the use of an Ni
2+
Fe
3+
-based layered double hydroxide (LDH) intercalated by chloride ions as a promising cathode material for CIBs. [Ni
2
Fe(OH)
6
]Cl·1.37H
2
O (NiFe-Cl LDH) exhibits a high maximum capacity of 350.6 mA h g
−1
and a long lifetime of over 800 cycles (at 101.1 mA h g
−1
) at a current density of 100 mA g
−1
, which is superior to most currently reported CIB cathodes.
In situ
X-ray absorption near-edge structure (XANES) and
ex situ
X-ray photoelectron spectroscopy (XPS) reveal the valency changes of the Fe
2+
/Fe
3+
and Ni
2+
/Ni
3+
redox pairs within the metal hydroxide layers of the LDH during electrochemcial cycling.
In situ
XRD reveals that 2D anion diffusion within the LDH results in only ∼3% structural change. Oxygen K-edge soft X-ray absorption spectroscopy (SXAS) reveals the oxygen atoms within the MO
6
octahedra reversibly participate in the electrochemical reaction. In view of the extensive chemical variation, low-cost, and ease-of-preparation of LDH-based materials we regard LDHs as a promising materials platform for application as cathode materials in chloride ion batteries.
NiFe-Cl layered double hydroxide (LDH) is proposed as a high-capacity and long lifetime cathode material for chloride ion batteries (CIBs), which delivers a maximum capacity of 350.6 mA h g
−1
and a long lifetime of 800 cycles.</description><subject>Absorption spectroscopy</subject><subject>Batteries</subject><subject>Cathode rays</subject><subject>Cathodes</subject><subject>Chloride</subject><subject>Chloride ions</subject><subject>Chlorides</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Ferric ions</subject><subject>Flux density</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>Nickel compounds</subject><subject>Oxygen</subject><subject>Oxygen atoms</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Rechargeable batteries</subject><subject>Soft x rays</subject><subject>Spectrum analysis</subject><subject>Valency</subject><subject>X ray absorption</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray absorption spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQFXdiRjNgQAccfiT1WhVJEBUuZI8cfjUtaBzuRyL8npahs3HI3PHcnvQBcpOguRUTca9RKRLFAH0dghBFDSU5FdnyYOT8F4xjXaCiOUCbECJi5W1VJY4L1YSO3ytzC2m9XsHbWtG5joKpqH5w20PktLGXbmtDDLrrBSPjqZiaZ1rCWvQlGQ-27sjaw6nXwX7slJdvKa3MOTqysoxn_9jPwPntcTufJ4u3peTpZJIrSrE2YYpIYnlvOMMlzXeJSMypSSohSjAkrSsQyWmYCc4lzRnSuEbFaaywYZoKcgev93Sb4z87Etlj7LmyHlwWmKc9ZhjkZ1M1eqeBjDMYWTXAbGfoiRcUuyeIBLSc_Sb4M-GqPQ1QH95d00Wg7mMv_DPkG0xJ6oA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yin, Qing</creator><creator>Luo, Jianeng</creator><creator>Zhang, Jian</creator><creator>Zheng, Lirong</creator><creator>Cui, Guoqing</creator><creator>Han, Jingbin</creator><creator>O'Hare, Dermot</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8054-8751</orcidid><orcidid>https://orcid.org/0000-0003-0888-6769</orcidid><orcidid>https://orcid.org/0000-0003-1237-9508</orcidid></search><sort><creationdate>20200101</creationdate><title>High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode</title><author>Yin, Qing ; Luo, Jianeng ; Zhang, Jian ; Zheng, Lirong ; Cui, Guoqing ; Han, Jingbin ; O'Hare, Dermot</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-5c5a3e87f852377db2bd5491433cc559f9b0564b6928a2753d7d03fddd2952593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectroscopy</topic><topic>Batteries</topic><topic>Cathode rays</topic><topic>Cathodes</topic><topic>Chloride</topic><topic>Chloride ions</topic><topic>Chlorides</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Ferric ions</topic><topic>Flux density</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>Nickel compounds</topic><topic>Oxygen</topic><topic>Oxygen atoms</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Rechargeable batteries</topic><topic>Soft x rays</topic><topic>Spectrum analysis</topic><topic>Valency</topic><topic>X ray absorption</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Qing</creatorcontrib><creatorcontrib>Luo, Jianeng</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Cui, Guoqing</creatorcontrib><creatorcontrib>Han, Jingbin</creatorcontrib><creatorcontrib>O'Hare, Dermot</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Qing</au><au>Luo, Jianeng</au><au>Zhang, Jian</au><au>Zheng, Lirong</au><au>Cui, Guoqing</au><au>Han, Jingbin</au><au>O'Hare, Dermot</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>25</issue><spage>12548</spage><epage>12555</epage><pages>12548-12555</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Chloride ion batteries (CIBs) are an example of a promising new emerging rechargeable battery technology, that exhibits large theoretical volumetric energy density performance and good safety. However, unsatisfactory capacity and poor cycling lifetime of the cathode currently hinder the development of CIBs. Herein, we report the use of an Ni
2+
Fe
3+
-based layered double hydroxide (LDH) intercalated by chloride ions as a promising cathode material for CIBs. [Ni
2
Fe(OH)
6
]Cl·1.37H
2
O (NiFe-Cl LDH) exhibits a high maximum capacity of 350.6 mA h g
−1
and a long lifetime of over 800 cycles (at 101.1 mA h g
−1
) at a current density of 100 mA g
−1
, which is superior to most currently reported CIB cathodes.
In situ
X-ray absorption near-edge structure (XANES) and
ex situ
X-ray photoelectron spectroscopy (XPS) reveal the valency changes of the Fe
2+
/Fe
3+
and Ni
2+
/Ni
3+
redox pairs within the metal hydroxide layers of the LDH during electrochemcial cycling.
In situ
XRD reveals that 2D anion diffusion within the LDH results in only ∼3% structural change. Oxygen K-edge soft X-ray absorption spectroscopy (SXAS) reveals the oxygen atoms within the MO
6
octahedra reversibly participate in the electrochemical reaction. In view of the extensive chemical variation, low-cost, and ease-of-preparation of LDH-based materials we regard LDHs as a promising materials platform for application as cathode materials in chloride ion batteries.
NiFe-Cl layered double hydroxide (LDH) is proposed as a high-capacity and long lifetime cathode material for chloride ion batteries (CIBs), which delivers a maximum capacity of 350.6 mA h g
−1
and a long lifetime of 800 cycles.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta04290k</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8054-8751</orcidid><orcidid>https://orcid.org/0000-0003-0888-6769</orcidid><orcidid>https://orcid.org/0000-0003-1237-9508</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (25), p.12548-12555 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0TA04290K |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Absorption spectroscopy Batteries Cathode rays Cathodes Chloride Chloride ions Chlorides Cycles Electrochemistry Electrode materials Ferric ions Flux density Hydroxides Intermetallic compounds Iron Iron compounds Nickel compounds Oxygen Oxygen atoms Photoelectron spectroscopy Photoelectrons Rechargeable batteries Soft x rays Spectrum analysis Valency X ray absorption X ray photoelectron spectroscopy X-ray absorption spectroscopy |
title | High-performance, long lifetime chloride ion battery using a NiFe-Cl layered double hydroxide cathode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance,%20long%20lifetime%20chloride%20ion%20battery%20using%20a%20NiFe-Cl%20layered%20double%20hydroxide%20cathode&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Yin,%20Qing&rft.date=2020-01-01&rft.volume=8&rft.issue=25&rft.spage=12548&rft.epage=12555&rft.pages=12548-12555&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta04290k&rft_dat=%3Cproquest_cross%3E2418756283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418756283&rft_id=info:pmid/&rfr_iscdi=true |