In situ exsolution of Ag from AgBiS 2 nanocrystal anode boosting high-performance potassium-ion batteries

The irreversible formation of a solid electrolyte interface (SEI) film on semimetal/semiconductors impedes the electrochemical migration of K + in potassium-ion batteries due to the inevitable volume expansion of the anode materials. Herein, we report the in situ exsolution of Ag in metastable nanos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-08, Vol.8 (30), p.15058-15065
Hauptverfasser: Ren, Xiaoru, Yu, Dongxu, Yuan, Long, Bai, Yaocai, Huang, Keke, Liu, Jinghai, Feng, Shouhua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15065
container_issue 30
container_start_page 15058
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Ren, Xiaoru
Yu, Dongxu
Yuan, Long
Bai, Yaocai
Huang, Keke
Liu, Jinghai
Feng, Shouhua
description The irreversible formation of a solid electrolyte interface (SEI) film on semimetal/semiconductors impedes the electrochemical migration of K + in potassium-ion batteries due to the inevitable volume expansion of the anode materials. Herein, we report the in situ exsolution of Ag in metastable nanostructured AgBiS 2 to spontaneously assist cycling for K + intercalation. The in situ XRD and ex situ HRTEM techniques revealed unique phase transitions during the uptake of K + on account of the mixed ion storage mechanism. During the initial reduction process, AgBiS 2 underwent K + /AgBiS 2 displacement, K + /BiS 2 conversion, and K + /Bi alloying reaction. The exsolution of Ag was electrochemically reduced in the process of K + insertion and remained as an intermediate charge transmitter to sustain a high reversible capacity of 420 mA h g −1 at 0.5 A g −1 , superior rate performance of 210 mA h g −1 at 5 A g −1 and long-term (over 300) cycle stability. This work presents a strategy to resolve the issues of single-element anodes in metal-ion batteries.
doi_str_mv 10.1039/D0TA03964K
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA03964K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D0TA03964K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76K-7e15c948fc203afdc3a1f93db8b51fba2aa6f713294c5842fb85f87f941358653</originalsourceid><addsrcrecordid>eNpFkL1OwzAYRS0EElXpwhN4RgrYcZzYYyh_VSsxkD1yHH-pURJHtiPRtycVCO5y7nSGg9AtJfeUMPnwRKpyYZ7tL9AqJZwkRSbzy78vxDXahPBJlglCcilXyO5GHGycsfkKrp-jdSN2gMsOg3fDwkf7gVM8qtFpfwpR9Xi5rcGNcyHascNH2x2TyXhwflCjNnhyUYVg5yE5yxoVo_HWhBt0BaoPZvPLNapenqvtW3J4f91ty0Oii3yfFIZyLTMBOiVMQauZoiBZ24iGU2hUqlQOBWWpzDQXWQqN4CAKkBllXOScrdHdj1Z7F4I3UE_eDsqfakrqc6b6PxP7Bt-JW2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In situ exsolution of Ag from AgBiS 2 nanocrystal anode boosting high-performance potassium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ren, Xiaoru ; Yu, Dongxu ; Yuan, Long ; Bai, Yaocai ; Huang, Keke ; Liu, Jinghai ; Feng, Shouhua</creator><creatorcontrib>Ren, Xiaoru ; Yu, Dongxu ; Yuan, Long ; Bai, Yaocai ; Huang, Keke ; Liu, Jinghai ; Feng, Shouhua</creatorcontrib><description>The irreversible formation of a solid electrolyte interface (SEI) film on semimetal/semiconductors impedes the electrochemical migration of K + in potassium-ion batteries due to the inevitable volume expansion of the anode materials. Herein, we report the in situ exsolution of Ag in metastable nanostructured AgBiS 2 to spontaneously assist cycling for K + intercalation. The in situ XRD and ex situ HRTEM techniques revealed unique phase transitions during the uptake of K + on account of the mixed ion storage mechanism. During the initial reduction process, AgBiS 2 underwent K + /AgBiS 2 displacement, K + /BiS 2 conversion, and K + /Bi alloying reaction. The exsolution of Ag was electrochemically reduced in the process of K + insertion and remained as an intermediate charge transmitter to sustain a high reversible capacity of 420 mA h g −1 at 0.5 A g −1 , superior rate performance of 210 mA h g −1 at 5 A g −1 and long-term (over 300) cycle stability. This work presents a strategy to resolve the issues of single-element anodes in metal-ion batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D0TA03964K</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (30), p.15058-15065</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76K-7e15c948fc203afdc3a1f93db8b51fba2aa6f713294c5842fb85f87f941358653</citedby><cites>FETCH-LOGICAL-c76K-7e15c948fc203afdc3a1f93db8b51fba2aa6f713294c5842fb85f87f941358653</cites><orcidid>0000-0002-3047-0295 ; 0000-0002-8995-2176 ; 0000-0002-6527-5756 ; 0000-0002-1070-1148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Ren, Xiaoru</creatorcontrib><creatorcontrib>Yu, Dongxu</creatorcontrib><creatorcontrib>Yuan, Long</creatorcontrib><creatorcontrib>Bai, Yaocai</creatorcontrib><creatorcontrib>Huang, Keke</creatorcontrib><creatorcontrib>Liu, Jinghai</creatorcontrib><creatorcontrib>Feng, Shouhua</creatorcontrib><title>In situ exsolution of Ag from AgBiS 2 nanocrystal anode boosting high-performance potassium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The irreversible formation of a solid electrolyte interface (SEI) film on semimetal/semiconductors impedes the electrochemical migration of K + in potassium-ion batteries due to the inevitable volume expansion of the anode materials. Herein, we report the in situ exsolution of Ag in metastable nanostructured AgBiS 2 to spontaneously assist cycling for K + intercalation. The in situ XRD and ex situ HRTEM techniques revealed unique phase transitions during the uptake of K + on account of the mixed ion storage mechanism. During the initial reduction process, AgBiS 2 underwent K + /AgBiS 2 displacement, K + /BiS 2 conversion, and K + /Bi alloying reaction. The exsolution of Ag was electrochemically reduced in the process of K + insertion and remained as an intermediate charge transmitter to sustain a high reversible capacity of 420 mA h g −1 at 0.5 A g −1 , superior rate performance of 210 mA h g −1 at 5 A g −1 and long-term (over 300) cycle stability. This work presents a strategy to resolve the issues of single-element anodes in metal-ion batteries.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkL1OwzAYRS0EElXpwhN4RgrYcZzYYyh_VSsxkD1yHH-pURJHtiPRtycVCO5y7nSGg9AtJfeUMPnwRKpyYZ7tL9AqJZwkRSbzy78vxDXahPBJlglCcilXyO5GHGycsfkKrp-jdSN2gMsOg3fDwkf7gVM8qtFpfwpR9Xi5rcGNcyHascNH2x2TyXhwflCjNnhyUYVg5yE5yxoVo_HWhBt0BaoPZvPLNapenqvtW3J4f91ty0Oii3yfFIZyLTMBOiVMQauZoiBZ24iGU2hUqlQOBWWpzDQXWQqN4CAKkBllXOScrdHdj1Z7F4I3UE_eDsqfakrqc6b6PxP7Bt-JW2w</recordid><startdate>20200804</startdate><enddate>20200804</enddate><creator>Ren, Xiaoru</creator><creator>Yu, Dongxu</creator><creator>Yuan, Long</creator><creator>Bai, Yaocai</creator><creator>Huang, Keke</creator><creator>Liu, Jinghai</creator><creator>Feng, Shouhua</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3047-0295</orcidid><orcidid>https://orcid.org/0000-0002-8995-2176</orcidid><orcidid>https://orcid.org/0000-0002-6527-5756</orcidid><orcidid>https://orcid.org/0000-0002-1070-1148</orcidid></search><sort><creationdate>20200804</creationdate><title>In situ exsolution of Ag from AgBiS 2 nanocrystal anode boosting high-performance potassium-ion batteries</title><author>Ren, Xiaoru ; Yu, Dongxu ; Yuan, Long ; Bai, Yaocai ; Huang, Keke ; Liu, Jinghai ; Feng, Shouhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76K-7e15c948fc203afdc3a1f93db8b51fba2aa6f713294c5842fb85f87f941358653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xiaoru</creatorcontrib><creatorcontrib>Yu, Dongxu</creatorcontrib><creatorcontrib>Yuan, Long</creatorcontrib><creatorcontrib>Bai, Yaocai</creatorcontrib><creatorcontrib>Huang, Keke</creatorcontrib><creatorcontrib>Liu, Jinghai</creatorcontrib><creatorcontrib>Feng, Shouhua</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xiaoru</au><au>Yu, Dongxu</au><au>Yuan, Long</au><au>Bai, Yaocai</au><au>Huang, Keke</au><au>Liu, Jinghai</au><au>Feng, Shouhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ exsolution of Ag from AgBiS 2 nanocrystal anode boosting high-performance potassium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-08-04</date><risdate>2020</risdate><volume>8</volume><issue>30</issue><spage>15058</spage><epage>15065</epage><pages>15058-15065</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The irreversible formation of a solid electrolyte interface (SEI) film on semimetal/semiconductors impedes the electrochemical migration of K + in potassium-ion batteries due to the inevitable volume expansion of the anode materials. Herein, we report the in situ exsolution of Ag in metastable nanostructured AgBiS 2 to spontaneously assist cycling for K + intercalation. The in situ XRD and ex situ HRTEM techniques revealed unique phase transitions during the uptake of K + on account of the mixed ion storage mechanism. During the initial reduction process, AgBiS 2 underwent K + /AgBiS 2 displacement, K + /BiS 2 conversion, and K + /Bi alloying reaction. The exsolution of Ag was electrochemically reduced in the process of K + insertion and remained as an intermediate charge transmitter to sustain a high reversible capacity of 420 mA h g −1 at 0.5 A g −1 , superior rate performance of 210 mA h g −1 at 5 A g −1 and long-term (over 300) cycle stability. This work presents a strategy to resolve the issues of single-element anodes in metal-ion batteries.</abstract><doi>10.1039/D0TA03964K</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3047-0295</orcidid><orcidid>https://orcid.org/0000-0002-8995-2176</orcidid><orcidid>https://orcid.org/0000-0002-6527-5756</orcidid><orcidid>https://orcid.org/0000-0002-1070-1148</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-08, Vol.8 (30), p.15058-15065
issn 2050-7488
2050-7496
language eng
recordid cdi_crossref_primary_10_1039_D0TA03964K
source Royal Society Of Chemistry Journals 2008-
title In situ exsolution of Ag from AgBiS 2 nanocrystal anode boosting high-performance potassium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20exsolution%20of%20Ag%20from%20AgBiS%202%20nanocrystal%20anode%20boosting%20high-performance%20potassium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ren,%20Xiaoru&rft.date=2020-08-04&rft.volume=8&rft.issue=30&rft.spage=15058&rft.epage=15065&rft.pages=15058-15065&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D0TA03964K&rft_dat=%3Ccrossref%3E10_1039_D0TA03964K%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true