Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review
Environmentally friendly energy sources such as solar and wind power as alternatives to fossil fuels are strategic for meeting the energy needs of an increasingly demanding population, but they are periodic or intermittent in nature, making energy storage devices fundamental for the realization of a...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (21), p.1534-157 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 21 |
container_start_page | 1534 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Gonçalves, Josué M da Silva, Matheus I Toma, Henrique E Angnes, Lucio Martins, Paulo R Araki, Koiti |
description | Environmentally friendly energy sources such as solar and wind power as alternatives to fossil fuels are strategic for meeting the energy needs of an increasingly demanding population, but they are periodic or intermittent in nature, making energy storage devices fundamental for the realization of a sustainable society. Thus, the quest for much higher power and energy dense devices, especially hybrid supercapacitors, as alternatives to lithium-ion batteries, has been scaling up since the combining of the outstanding power density of supercapacitive materials with the high energy density of battery-type materials into a single device. Despite their high resistance, transition metal oxides are promising electrode materials for use in devices, since their rich electrochemistry can be activated by three main strategies to boost the specific charge capacity, charge-discharge and ion diffusion kinetics, and cyclability of devices
via
: (a) the incorporation of hetero-atoms that generate trimetallic oxides, (b) nanostructuration
via
hierarchical core@shell furry and mesoporous systems, and (c) combination with other materials to generate nanocomposites. These strategies, especially those leading to highly porous 3D core@shell architecture nanomaterials, are very successful, where trimetallic oxides, and ternary
T
LDHs and multicomponent systems, realized
via
the combination of mono- and/or bimetallic oxides and hydroxides, have demonstrated exceptionally good performances as electrode materials, presenting bright new perspectives for the future of hybrid energy storage devices.
The main strategies to impart synergistic catalytic effects to trimetallic oxide/layered double hydroxide materials are discussed: (a) heteroatom incorporation, (b) the formation of nanocomposites, and (c) hierarchical core@shell nanostructuration. |
doi_str_mv | 10.1039/d0ta02939d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA02939D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408552927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-1e1a3deb6265c56e5ef5ab8ba13263ce2aebae053edd0ebafd7260a6ead44f8f3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsNRevAsr3oToZDe7zXorrV9Q8BLPYbI7oSmpibup2v_e1Ei9OZd5DD_m8R5j5zHcxCDNrYMOQRhp3BEbCVAQTROjjw86TU_ZJIQ19JMCaGNGLMt8taEO67qyvPmqHIXb1c75QXIMfLUrfOV42LbkLbZoq67xnGqynW8c8Q125Cuswx1H7umjos8zdlL2B5r87jF7fbjP5k_R8uXxeT5bRjZRcRfFFKN0VGihlVWaFJUKi7TAWAotLQmkAgmUJOegl6WbCg2oCV2SlGkpx-xq-Nv65n1LocvXzda_9Za5SCBVShgx7anrgbK-CcFTmbd9ZvS7PIZ8X1y-gGz2U9yihy8H2Ad74P6KzVu3t734j5Hfu6J4DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408552927</pqid></control><display><type>article</type><title>Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gonçalves, Josué M ; da Silva, Matheus I ; Toma, Henrique E ; Angnes, Lucio ; Martins, Paulo R ; Araki, Koiti</creator><creatorcontrib>Gonçalves, Josué M ; da Silva, Matheus I ; Toma, Henrique E ; Angnes, Lucio ; Martins, Paulo R ; Araki, Koiti</creatorcontrib><description>Environmentally friendly energy sources such as solar and wind power as alternatives to fossil fuels are strategic for meeting the energy needs of an increasingly demanding population, but they are periodic or intermittent in nature, making energy storage devices fundamental for the realization of a sustainable society. Thus, the quest for much higher power and energy dense devices, especially hybrid supercapacitors, as alternatives to lithium-ion batteries, has been scaling up since the combining of the outstanding power density of supercapacitive materials with the high energy density of battery-type materials into a single device. Despite their high resistance, transition metal oxides are promising electrode materials for use in devices, since their rich electrochemistry can be activated by three main strategies to boost the specific charge capacity, charge-discharge and ion diffusion kinetics, and cyclability of devices
via
: (a) the incorporation of hetero-atoms that generate trimetallic oxides, (b) nanostructuration
via
hierarchical core@shell furry and mesoporous systems, and (c) combination with other materials to generate nanocomposites. These strategies, especially those leading to highly porous 3D core@shell architecture nanomaterials, are very successful, where trimetallic oxides, and ternary
T
LDHs and multicomponent systems, realized
via
the combination of mono- and/or bimetallic oxides and hydroxides, have demonstrated exceptionally good performances as electrode materials, presenting bright new perspectives for the future of hybrid energy storage devices.
The main strategies to impart synergistic catalytic effects to trimetallic oxide/layered double hydroxide materials are discussed: (a) heteroatom incorporation, (b) the formation of nanocomposites, and (c) hierarchical core@shell nanostructuration.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta02939d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alternative energy sources ; Alternative fuels ; Batteries ; Bimetals ; Devices ; Electrochemistry ; Electrode materials ; Electrodes ; Energy ; Energy sources ; Energy storage ; Flux density ; Fossil fuels ; High resistance ; Hydroxides ; Ion diffusion ; Lithium ; Lithium-ion batteries ; Nanocomposites ; Nanomaterials ; Nanotechnology ; Oxides ; Rechargeable batteries ; Solar energy ; Solar power ; Supercapacitors ; Transition metal oxides ; Wind power</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (21), p.1534-157</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-1e1a3deb6265c56e5ef5ab8ba13263ce2aebae053edd0ebafd7260a6ead44f8f3</citedby><cites>FETCH-LOGICAL-c451t-1e1a3deb6265c56e5ef5ab8ba13263ce2aebae053edd0ebafd7260a6ead44f8f3</cites><orcidid>0000-0002-4044-391X ; 0000-0003-0800-077X ; 0000-0003-3485-4592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gonçalves, Josué M</creatorcontrib><creatorcontrib>da Silva, Matheus I</creatorcontrib><creatorcontrib>Toma, Henrique E</creatorcontrib><creatorcontrib>Angnes, Lucio</creatorcontrib><creatorcontrib>Martins, Paulo R</creatorcontrib><creatorcontrib>Araki, Koiti</creatorcontrib><title>Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Environmentally friendly energy sources such as solar and wind power as alternatives to fossil fuels are strategic for meeting the energy needs of an increasingly demanding population, but they are periodic or intermittent in nature, making energy storage devices fundamental for the realization of a sustainable society. Thus, the quest for much higher power and energy dense devices, especially hybrid supercapacitors, as alternatives to lithium-ion batteries, has been scaling up since the combining of the outstanding power density of supercapacitive materials with the high energy density of battery-type materials into a single device. Despite their high resistance, transition metal oxides are promising electrode materials for use in devices, since their rich electrochemistry can be activated by three main strategies to boost the specific charge capacity, charge-discharge and ion diffusion kinetics, and cyclability of devices
via
: (a) the incorporation of hetero-atoms that generate trimetallic oxides, (b) nanostructuration
via
hierarchical core@shell furry and mesoporous systems, and (c) combination with other materials to generate nanocomposites. These strategies, especially those leading to highly porous 3D core@shell architecture nanomaterials, are very successful, where trimetallic oxides, and ternary
T
LDHs and multicomponent systems, realized
via
the combination of mono- and/or bimetallic oxides and hydroxides, have demonstrated exceptionally good performances as electrode materials, presenting bright new perspectives for the future of hybrid energy storage devices.
The main strategies to impart synergistic catalytic effects to trimetallic oxide/layered double hydroxide materials are discussed: (a) heteroatom incorporation, (b) the formation of nanocomposites, and (c) hierarchical core@shell nanostructuration.</description><subject>Alternative energy sources</subject><subject>Alternative fuels</subject><subject>Batteries</subject><subject>Bimetals</subject><subject>Devices</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Fossil fuels</subject><subject>High resistance</subject><subject>Hydroxides</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>Oxides</subject><subject>Rechargeable batteries</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Supercapacitors</subject><subject>Transition metal oxides</subject><subject>Wind power</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsNRevAsr3oToZDe7zXorrV9Q8BLPYbI7oSmpibup2v_e1Ei9OZd5DD_m8R5j5zHcxCDNrYMOQRhp3BEbCVAQTROjjw86TU_ZJIQ19JMCaGNGLMt8taEO67qyvPmqHIXb1c75QXIMfLUrfOV42LbkLbZoq67xnGqynW8c8Q125Cuswx1H7umjos8zdlL2B5r87jF7fbjP5k_R8uXxeT5bRjZRcRfFFKN0VGihlVWaFJUKi7TAWAotLQmkAgmUJOegl6WbCg2oCV2SlGkpx-xq-Nv65n1LocvXzda_9Za5SCBVShgx7anrgbK-CcFTmbd9ZvS7PIZ8X1y-gGz2U9yihy8H2Ad74P6KzVu3t734j5Hfu6J4DA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Gonçalves, Josué M</creator><creator>da Silva, Matheus I</creator><creator>Toma, Henrique E</creator><creator>Angnes, Lucio</creator><creator>Martins, Paulo R</creator><creator>Araki, Koiti</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4044-391X</orcidid><orcidid>https://orcid.org/0000-0003-0800-077X</orcidid><orcidid>https://orcid.org/0000-0003-3485-4592</orcidid></search><sort><creationdate>20200101</creationdate><title>Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review</title><author>Gonçalves, Josué M ; da Silva, Matheus I ; Toma, Henrique E ; Angnes, Lucio ; Martins, Paulo R ; Araki, Koiti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-1e1a3deb6265c56e5ef5ab8ba13263ce2aebae053edd0ebafd7260a6ead44f8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative energy sources</topic><topic>Alternative fuels</topic><topic>Batteries</topic><topic>Bimetals</topic><topic>Devices</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Fossil fuels</topic><topic>High resistance</topic><topic>Hydroxides</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>Oxides</topic><topic>Rechargeable batteries</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Supercapacitors</topic><topic>Transition metal oxides</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonçalves, Josué M</creatorcontrib><creatorcontrib>da Silva, Matheus I</creatorcontrib><creatorcontrib>Toma, Henrique E</creatorcontrib><creatorcontrib>Angnes, Lucio</creatorcontrib><creatorcontrib>Martins, Paulo R</creatorcontrib><creatorcontrib>Araki, Koiti</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalves, Josué M</au><au>da Silva, Matheus I</au><au>Toma, Henrique E</au><au>Angnes, Lucio</au><au>Martins, Paulo R</au><au>Araki, Koiti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>21</issue><spage>1534</spage><epage>157</epage><pages>1534-157</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Environmentally friendly energy sources such as solar and wind power as alternatives to fossil fuels are strategic for meeting the energy needs of an increasingly demanding population, but they are periodic or intermittent in nature, making energy storage devices fundamental for the realization of a sustainable society. Thus, the quest for much higher power and energy dense devices, especially hybrid supercapacitors, as alternatives to lithium-ion batteries, has been scaling up since the combining of the outstanding power density of supercapacitive materials with the high energy density of battery-type materials into a single device. Despite their high resistance, transition metal oxides are promising electrode materials for use in devices, since their rich electrochemistry can be activated by three main strategies to boost the specific charge capacity, charge-discharge and ion diffusion kinetics, and cyclability of devices
via
: (a) the incorporation of hetero-atoms that generate trimetallic oxides, (b) nanostructuration
via
hierarchical core@shell furry and mesoporous systems, and (c) combination with other materials to generate nanocomposites. These strategies, especially those leading to highly porous 3D core@shell architecture nanomaterials, are very successful, where trimetallic oxides, and ternary
T
LDHs and multicomponent systems, realized
via
the combination of mono- and/or bimetallic oxides and hydroxides, have demonstrated exceptionally good performances as electrode materials, presenting bright new perspectives for the future of hybrid energy storage devices.
The main strategies to impart synergistic catalytic effects to trimetallic oxide/layered double hydroxide materials are discussed: (a) heteroatom incorporation, (b) the formation of nanocomposites, and (c) hierarchical core@shell nanostructuration.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta02939d</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-4044-391X</orcidid><orcidid>https://orcid.org/0000-0003-0800-077X</orcidid><orcidid>https://orcid.org/0000-0003-3485-4592</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (21), p.1534-157 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0TA02939D |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Alternative energy sources Alternative fuels Batteries Bimetals Devices Electrochemistry Electrode materials Electrodes Energy Energy sources Energy storage Flux density Fossil fuels High resistance Hydroxides Ion diffusion Lithium Lithium-ion batteries Nanocomposites Nanomaterials Nanotechnology Oxides Rechargeable batteries Solar energy Solar power Supercapacitors Transition metal oxides Wind power |
title | Trimetallic oxides/hydroxides as hybrid supercapacitor electrode materials: a review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trimetallic%20oxides/hydroxides%20as%20hybrid%20supercapacitor%20electrode%20materials:%20a%20review&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Gon%C3%A7alves,%20Josu%C3%A9%20M&rft.date=2020-01-01&rft.volume=8&rft.issue=21&rft.spage=1534&rft.epage=157&rft.pages=1534-157&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta02939d&rft_dat=%3Cproquest_cross%3E2408552927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408552927&rft_id=info:pmid/&rfr_iscdi=true |