Li conducting garnet-type oxide sintering triggered by an H/Li ion-exchange reaction
Solid-state batteries (SSBs) using a garnet-based oxide electrolyte, Li 7 La 3 Zr 2 O 12 (LLZ), are attracting considerable attention as a future power storage solution with a promising higher safety level than that of the conventional lithium-ion batteries (LIBs) using liquid organic electrolytes d...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (18), p.8989-8996 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8996 |
---|---|
container_issue | 18 |
container_start_page | 8989 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Ohta, Shingo Kawakami, Masatsugu Nozaki, Hiroshi Yada, Chihiro Saito, Toshiya Iba, Hideki |
description | Solid-state batteries (SSBs) using a garnet-based oxide electrolyte, Li
7
La
3
Zr
2
O
12
(LLZ), are attracting considerable attention as a future power storage solution with a promising higher safety level than that of the conventional lithium-ion batteries (LIBs) using liquid organic electrolytes due to the non-flammability of LLZ. However, the major obstacle in realizing oxide-based SSBs is their high-temperature fabrication process (
e.g.
, above 600 °C), resulting in the formation of insulating impurities by the reaction between the cathode and electrolyte materials. Herein, we have demonstrated the fabrication of a solid-state Li/LLZ/Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
battery at a remarkably low temperature (400 °C) using our invented "low temperature sintering triggered by an ion-exchange reaction (LTI)". The LTI promotes element diffusion
via
limited ion exchange within a range that maintains the crystal structure, enabling a lower sintering temperature and shorter sintering time. The high capacity of the fabricated SSB was confirmed to be 127 mA h g
−1
for the electrode and the operation temperature was increased up to 100 °C, where conventional LIBs with liquid electrolytes do not work due to the vaporization of the solvent.
We demonstrate the fabrication of a solid state Li/Li
7
La
3
Zr
2
O
12
/Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
battery at a remarkably low temperature (400 °C) using low temperature sintering triggered by an ion-exchange reaction. |
doi_str_mv | 10.1039/d0ta00059k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0TA00059K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400968196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-cd39c90c2fa04043faf6adf022e0e432e2300522a03155a655710febeffc205c3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgChbtxbsQ8SasnSS7282x1I-KBS_1HNLsZN2q2TVJof33plbqzVMG8swM8xJyweCWgZCjGqIGgEK-H5EBhwKycS7L40NdVadkGMIqGagASikHZDFvqelcvTaxdQ1ttHcYs7jtkXabtkYaWhfR7_6ib5sGPdZ0uaXa0dko9bady3Bj3rRrkHrUaUznzsmJ1R8Bh7_vGXl9uF9MZ9n85fFpOplnJmcQM1MLaSQYbjXkkAurbalrC5wjYC44cpGu4VyDYEWhy6IYM7C4RGtNOsmIM3K9n9v77muNIapVt_YurVQ8B5BlxWSZ1M1eGd-F4NGq3ref2m8VA7ULTt3BYvIT3HPCV3vsgzm4v2BVX9tkLv8z4hsDYHT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400968196</pqid></control><display><type>article</type><title>Li conducting garnet-type oxide sintering triggered by an H/Li ion-exchange reaction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ohta, Shingo ; Kawakami, Masatsugu ; Nozaki, Hiroshi ; Yada, Chihiro ; Saito, Toshiya ; Iba, Hideki</creator><creatorcontrib>Ohta, Shingo ; Kawakami, Masatsugu ; Nozaki, Hiroshi ; Yada, Chihiro ; Saito, Toshiya ; Iba, Hideki</creatorcontrib><description>Solid-state batteries (SSBs) using a garnet-based oxide electrolyte, Li
7
La
3
Zr
2
O
12
(LLZ), are attracting considerable attention as a future power storage solution with a promising higher safety level than that of the conventional lithium-ion batteries (LIBs) using liquid organic electrolytes due to the non-flammability of LLZ. However, the major obstacle in realizing oxide-based SSBs is their high-temperature fabrication process (
e.g.
, above 600 °C), resulting in the formation of insulating impurities by the reaction between the cathode and electrolyte materials. Herein, we have demonstrated the fabrication of a solid-state Li/LLZ/Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
battery at a remarkably low temperature (400 °C) using our invented "low temperature sintering triggered by an ion-exchange reaction (LTI)". The LTI promotes element diffusion
via
limited ion exchange within a range that maintains the crystal structure, enabling a lower sintering temperature and shorter sintering time. The high capacity of the fabricated SSB was confirmed to be 127 mA h g
−1
for the electrode and the operation temperature was increased up to 100 °C, where conventional LIBs with liquid electrolytes do not work due to the vaporization of the solvent.
We demonstrate the fabrication of a solid state Li/Li
7
La
3
Zr
2
O
12
/Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
battery at a remarkably low temperature (400 °C) using low temperature sintering triggered by an ion-exchange reaction.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta00059k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crystal structure ; Differential thermal analysis ; Diffraction patterns ; Electrolytes ; Fabrication ; Flammability ; High temperature ; Impedance measurement ; Impurities ; Ion exchange ; Lithium ; Lithium-ion batteries ; Low temperature ; Neutron diffraction ; Nonaqueous electrolytes ; Rechargeable batteries ; Sintering ; Solid state ; Vaporization</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (18), p.8989-8996</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-cd39c90c2fa04043faf6adf022e0e432e2300522a03155a655710febeffc205c3</citedby><cites>FETCH-LOGICAL-c410t-cd39c90c2fa04043faf6adf022e0e432e2300522a03155a655710febeffc205c3</cites><orcidid>0000-0002-5089-3949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ohta, Shingo</creatorcontrib><creatorcontrib>Kawakami, Masatsugu</creatorcontrib><creatorcontrib>Nozaki, Hiroshi</creatorcontrib><creatorcontrib>Yada, Chihiro</creatorcontrib><creatorcontrib>Saito, Toshiya</creatorcontrib><creatorcontrib>Iba, Hideki</creatorcontrib><title>Li conducting garnet-type oxide sintering triggered by an H/Li ion-exchange reaction</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Solid-state batteries (SSBs) using a garnet-based oxide electrolyte, Li
7
La
3
Zr
2
O
12
(LLZ), are attracting considerable attention as a future power storage solution with a promising higher safety level than that of the conventional lithium-ion batteries (LIBs) using liquid organic electrolytes due to the non-flammability of LLZ. However, the major obstacle in realizing oxide-based SSBs is their high-temperature fabrication process (
e.g.
, above 600 °C), resulting in the formation of insulating impurities by the reaction between the cathode and electrolyte materials. Herein, we have demonstrated the fabrication of a solid-state Li/LLZ/Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
battery at a remarkably low temperature (400 °C) using our invented "low temperature sintering triggered by an ion-exchange reaction (LTI)". The LTI promotes element diffusion
via
limited ion exchange within a range that maintains the crystal structure, enabling a lower sintering temperature and shorter sintering time. The high capacity of the fabricated SSB was confirmed to be 127 mA h g
−1
for the electrode and the operation temperature was increased up to 100 °C, where conventional LIBs with liquid electrolytes do not work due to the vaporization of the solvent.
We demonstrate the fabrication of a solid state Li/Li
7
La
3
Zr
2
O
12
/Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
battery at a remarkably low temperature (400 °C) using low temperature sintering triggered by an ion-exchange reaction.</description><subject>Crystal structure</subject><subject>Differential thermal analysis</subject><subject>Diffraction patterns</subject><subject>Electrolytes</subject><subject>Fabrication</subject><subject>Flammability</subject><subject>High temperature</subject><subject>Impedance measurement</subject><subject>Impurities</subject><subject>Ion exchange</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Low temperature</subject><subject>Neutron diffraction</subject><subject>Nonaqueous electrolytes</subject><subject>Rechargeable batteries</subject><subject>Sintering</subject><subject>Solid state</subject><subject>Vaporization</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgChbtxbsQ8SasnSS7282x1I-KBS_1HNLsZN2q2TVJof33plbqzVMG8swM8xJyweCWgZCjGqIGgEK-H5EBhwKycS7L40NdVadkGMIqGagASikHZDFvqelcvTaxdQ1ttHcYs7jtkXabtkYaWhfR7_6ib5sGPdZ0uaXa0dko9bady3Bj3rRrkHrUaUznzsmJ1R8Bh7_vGXl9uF9MZ9n85fFpOplnJmcQM1MLaSQYbjXkkAurbalrC5wjYC44cpGu4VyDYEWhy6IYM7C4RGtNOsmIM3K9n9v77muNIapVt_YurVQ8B5BlxWSZ1M1eGd-F4NGq3ref2m8VA7ULTt3BYvIT3HPCV3vsgzm4v2BVX9tkLv8z4hsDYHT8</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ohta, Shingo</creator><creator>Kawakami, Masatsugu</creator><creator>Nozaki, Hiroshi</creator><creator>Yada, Chihiro</creator><creator>Saito, Toshiya</creator><creator>Iba, Hideki</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5089-3949</orcidid></search><sort><creationdate>20200101</creationdate><title>Li conducting garnet-type oxide sintering triggered by an H/Li ion-exchange reaction</title><author>Ohta, Shingo ; Kawakami, Masatsugu ; Nozaki, Hiroshi ; Yada, Chihiro ; Saito, Toshiya ; Iba, Hideki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-cd39c90c2fa04043faf6adf022e0e432e2300522a03155a655710febeffc205c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crystal structure</topic><topic>Differential thermal analysis</topic><topic>Diffraction patterns</topic><topic>Electrolytes</topic><topic>Fabrication</topic><topic>Flammability</topic><topic>High temperature</topic><topic>Impedance measurement</topic><topic>Impurities</topic><topic>Ion exchange</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Low temperature</topic><topic>Neutron diffraction</topic><topic>Nonaqueous electrolytes</topic><topic>Rechargeable batteries</topic><topic>Sintering</topic><topic>Solid state</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohta, Shingo</creatorcontrib><creatorcontrib>Kawakami, Masatsugu</creatorcontrib><creatorcontrib>Nozaki, Hiroshi</creatorcontrib><creatorcontrib>Yada, Chihiro</creatorcontrib><creatorcontrib>Saito, Toshiya</creatorcontrib><creatorcontrib>Iba, Hideki</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohta, Shingo</au><au>Kawakami, Masatsugu</au><au>Nozaki, Hiroshi</au><au>Yada, Chihiro</au><au>Saito, Toshiya</au><au>Iba, Hideki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li conducting garnet-type oxide sintering triggered by an H/Li ion-exchange reaction</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>18</issue><spage>8989</spage><epage>8996</epage><pages>8989-8996</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Solid-state batteries (SSBs) using a garnet-based oxide electrolyte, Li
7
La
3
Zr
2
O
12
(LLZ), are attracting considerable attention as a future power storage solution with a promising higher safety level than that of the conventional lithium-ion batteries (LIBs) using liquid organic electrolytes due to the non-flammability of LLZ. However, the major obstacle in realizing oxide-based SSBs is their high-temperature fabrication process (
e.g.
, above 600 °C), resulting in the formation of insulating impurities by the reaction between the cathode and electrolyte materials. Herein, we have demonstrated the fabrication of a solid-state Li/LLZ/Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
battery at a remarkably low temperature (400 °C) using our invented "low temperature sintering triggered by an ion-exchange reaction (LTI)". The LTI promotes element diffusion
via
limited ion exchange within a range that maintains the crystal structure, enabling a lower sintering temperature and shorter sintering time. The high capacity of the fabricated SSB was confirmed to be 127 mA h g
−1
for the electrode and the operation temperature was increased up to 100 °C, where conventional LIBs with liquid electrolytes do not work due to the vaporization of the solvent.
We demonstrate the fabrication of a solid state Li/Li
7
La
3
Zr
2
O
12
/Li(Ni
1/3
Co
1/3
Mn
1/3
)O
2
battery at a remarkably low temperature (400 °C) using low temperature sintering triggered by an ion-exchange reaction.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta00059k</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5089-3949</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (18), p.8989-8996 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0TA00059K |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Crystal structure Differential thermal analysis Diffraction patterns Electrolytes Fabrication Flammability High temperature Impedance measurement Impurities Ion exchange Lithium Lithium-ion batteries Low temperature Neutron diffraction Nonaqueous electrolytes Rechargeable batteries Sintering Solid state Vaporization |
title | Li conducting garnet-type oxide sintering triggered by an H/Li ion-exchange reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li%20conducting%20garnet-type%20oxide%20sintering%20triggered%20by%20an%20H/Li%20ion-exchange%20reaction&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Ohta,%20Shingo&rft.date=2020-01-01&rft.volume=8&rft.issue=18&rft.spage=8989&rft.epage=8996&rft.pages=8989-8996&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta00059k&rft_dat=%3Cproquest_cross%3E2400968196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400968196&rft_id=info:pmid/&rfr_iscdi=true |