Colloidal assembly by directional ice templating

We investigate directional ice templating of dilute aqueous colloidal particle dispersions and examine the nature of the assemblies that result. We coat micron-size polystyrene colloids with cross-linkable polymer (polyethyleneimine, PEI), add cross-linker, and subject this dispersion to unidirectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-04, Vol.17 (15), p.498-418
Hauptverfasser: Biswas, Bipul, Misra, Mayank, Bisht, Anil Singh, Kumar, Sanat K, Kumaraswamy, Guruswamy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 15
container_start_page 498
container_title Soft matter
container_volume 17
creator Biswas, Bipul
Misra, Mayank
Bisht, Anil Singh
Kumar, Sanat K
Kumaraswamy, Guruswamy
description We investigate directional ice templating of dilute aqueous colloidal particle dispersions and examine the nature of the assemblies that result. We coat micron-size polystyrene colloids with cross-linkable polymer (polyethyleneimine, PEI), add cross-linker, and subject this dispersion to unidirectional freezing. We work at sufficiently low colloid concentrations, such that the particles do not percolate on freezing. When the aqueous dispersion freezes, ice crystals force polymer-coated particles and cross-linker into close proximity. This results in the formation of cross-linked clusters of particles at ice crystal boundaries. We vary the particle volume fraction from ∼ 2.5 × 10 −3 to ∼ 5.0 × 10 −2 and observe that there is a transition from isolated single particles to increasingly large sized clusters. Most of the clusters formed under these conditions are either linear, two-particle wide chains, or sheet-like aggregates. The probability ( P n ) of clusters containing n particles ( n > 2) obeys a power law P n ∼ n − η , where η strongly depends on the particle concentration in the dispersion, varying from 2.10 (for ∼ 5.0 × 10 −2 ) to 3.03 (for ∼ 2.5 × 10 −3 ). This change in η is qualitatively different from the case of isotropic freezing, where η is particle concentration-independent and depends only on the ice nucleation density. To understand the differences between isotropic and directional ice templating, we performed lattice simulations of a highly simplified model, where ice crystals grow at a constant rate to force clustering. We ignore hydrodynamic interactions and ice growth instabilities. Despite ignoring these experimental details, the simulations capture the experimental results, nearly quantitatively. As the ice crystals grow and the space available to the colloids "closes up" so that the particles cluster to form aggregates, crystallization protocol-induced differences in the geometry of these "closed up" spaces determine the scaling behaviour of P n . We investigate directional ice templating of dilute aqueous colloidal particle dispersions and examine the nature of the assemblies that result.
doi_str_mv 10.1039/d0sm02057e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0SM02057E</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515585227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-8859e1d4b4d7012ffee22561f753629d32a23d860d7d29c85824032ec8368d333</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4EWEavJe0qRHqfMHTDyo4K20SSod6TqT9rD_3s7NCZ7ySD483vuGkFNGrxnF9MbQ0FCgQto9MmaS8zhRXO3vavwYkaMQ5pSi4iw5JCNECSkk6ZjQrHWurU3hoiIE25RuFZWryNTe6q5uF8N9rW3U2Wbpiq5efB6Tg6pwwZ5szwl5v5--ZY_x7OXhKbudxRol72KlRGqZ4SU3kjKoKmsBRMIqKTCB1CAUgEYl1EgDqVZCAacIVitMlEHECbnc9F369qu3ocubOmjrXLGwbR9yEBSADSut6cU_Om97P4y-VkwIJQDkoK42Svs2BG-rfOnrpvCrnNF8nWN-R1-ff3KcDvh827IvG2t29De4AZxtgA969_r3EfgN1h50hQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515585227</pqid></control><display><type>article</type><title>Colloidal assembly by directional ice templating</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Biswas, Bipul ; Misra, Mayank ; Bisht, Anil Singh ; Kumar, Sanat K ; Kumaraswamy, Guruswamy</creator><creatorcontrib>Biswas, Bipul ; Misra, Mayank ; Bisht, Anil Singh ; Kumar, Sanat K ; Kumaraswamy, Guruswamy</creatorcontrib><description>We investigate directional ice templating of dilute aqueous colloidal particle dispersions and examine the nature of the assemblies that result. We coat micron-size polystyrene colloids with cross-linkable polymer (polyethyleneimine, PEI), add cross-linker, and subject this dispersion to unidirectional freezing. We work at sufficiently low colloid concentrations, such that the particles do not percolate on freezing. When the aqueous dispersion freezes, ice crystals force polymer-coated particles and cross-linker into close proximity. This results in the formation of cross-linked clusters of particles at ice crystal boundaries. We vary the particle volume fraction from ∼ 2.5 × 10 −3 to ∼ 5.0 × 10 −2 and observe that there is a transition from isolated single particles to increasingly large sized clusters. Most of the clusters formed under these conditions are either linear, two-particle wide chains, or sheet-like aggregates. The probability ( P n ) of clusters containing n particles ( n &gt; 2) obeys a power law P n ∼ n − η , where η strongly depends on the particle concentration in the dispersion, varying from 2.10 (for ∼ 5.0 × 10 −2 ) to 3.03 (for ∼ 2.5 × 10 −3 ). This change in η is qualitatively different from the case of isotropic freezing, where η is particle concentration-independent and depends only on the ice nucleation density. To understand the differences between isotropic and directional ice templating, we performed lattice simulations of a highly simplified model, where ice crystals grow at a constant rate to force clustering. We ignore hydrodynamic interactions and ice growth instabilities. Despite ignoring these experimental details, the simulations capture the experimental results, nearly quantitatively. As the ice crystals grow and the space available to the colloids "closes up" so that the particles cluster to form aggregates, crystallization protocol-induced differences in the geometry of these "closed up" spaces determine the scaling behaviour of P n . We investigate directional ice templating of dilute aqueous colloidal particle dispersions and examine the nature of the assemblies that result.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d0sm02057e</identifier><identifier>PMID: 33729269</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aggregates ; Clustering ; Coated particles ; Colloids ; Crosslinking ; Crystal growth ; Crystal lattices ; Crystallization ; Crystals ; Dispersions ; Freezing ; Ice ; Ice crystals ; Ice nucleation ; Nucleation ; Polyethyleneimine ; Polymer coatings ; Polymers ; Polystyrene ; Polystyrene resins</subject><ispartof>Soft matter, 2021-04, Vol.17 (15), p.498-418</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-8859e1d4b4d7012ffee22561f753629d32a23d860d7d29c85824032ec8368d333</citedby><cites>FETCH-LOGICAL-c374t-8859e1d4b4d7012ffee22561f753629d32a23d860d7d29c85824032ec8368d333</cites><orcidid>0000-0001-9442-0775 ; 0000-0002-2700-1228 ; 0000-0002-6690-2221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33729269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biswas, Bipul</creatorcontrib><creatorcontrib>Misra, Mayank</creatorcontrib><creatorcontrib>Bisht, Anil Singh</creatorcontrib><creatorcontrib>Kumar, Sanat K</creatorcontrib><creatorcontrib>Kumaraswamy, Guruswamy</creatorcontrib><title>Colloidal assembly by directional ice templating</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>We investigate directional ice templating of dilute aqueous colloidal particle dispersions and examine the nature of the assemblies that result. We coat micron-size polystyrene colloids with cross-linkable polymer (polyethyleneimine, PEI), add cross-linker, and subject this dispersion to unidirectional freezing. We work at sufficiently low colloid concentrations, such that the particles do not percolate on freezing. When the aqueous dispersion freezes, ice crystals force polymer-coated particles and cross-linker into close proximity. This results in the formation of cross-linked clusters of particles at ice crystal boundaries. We vary the particle volume fraction from ∼ 2.5 × 10 −3 to ∼ 5.0 × 10 −2 and observe that there is a transition from isolated single particles to increasingly large sized clusters. Most of the clusters formed under these conditions are either linear, two-particle wide chains, or sheet-like aggregates. The probability ( P n ) of clusters containing n particles ( n &gt; 2) obeys a power law P n ∼ n − η , where η strongly depends on the particle concentration in the dispersion, varying from 2.10 (for ∼ 5.0 × 10 −2 ) to 3.03 (for ∼ 2.5 × 10 −3 ). This change in η is qualitatively different from the case of isotropic freezing, where η is particle concentration-independent and depends only on the ice nucleation density. To understand the differences between isotropic and directional ice templating, we performed lattice simulations of a highly simplified model, where ice crystals grow at a constant rate to force clustering. We ignore hydrodynamic interactions and ice growth instabilities. Despite ignoring these experimental details, the simulations capture the experimental results, nearly quantitatively. As the ice crystals grow and the space available to the colloids "closes up" so that the particles cluster to form aggregates, crystallization protocol-induced differences in the geometry of these "closed up" spaces determine the scaling behaviour of P n . We investigate directional ice templating of dilute aqueous colloidal particle dispersions and examine the nature of the assemblies that result.</description><subject>Aggregates</subject><subject>Clustering</subject><subject>Coated particles</subject><subject>Colloids</subject><subject>Crosslinking</subject><subject>Crystal growth</subject><subject>Crystal lattices</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Dispersions</subject><subject>Freezing</subject><subject>Ice</subject><subject>Ice crystals</subject><subject>Ice nucleation</subject><subject>Nucleation</subject><subject>Polyethyleneimine</subject><subject>Polymer coatings</subject><subject>Polymers</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3el4EWEavJe0qRHqfMHTDyo4K20SSod6TqT9rD_3s7NCZ7ySD483vuGkFNGrxnF9MbQ0FCgQto9MmaS8zhRXO3vavwYkaMQ5pSi4iw5JCNECSkk6ZjQrHWurU3hoiIE25RuFZWryNTe6q5uF8N9rW3U2Wbpiq5efB6Tg6pwwZ5szwl5v5--ZY_x7OXhKbudxRol72KlRGqZ4SU3kjKoKmsBRMIqKTCB1CAUgEYl1EgDqVZCAacIVitMlEHECbnc9F369qu3ocubOmjrXLGwbR9yEBSADSut6cU_Om97P4y-VkwIJQDkoK42Svs2BG-rfOnrpvCrnNF8nWN-R1-ff3KcDvh827IvG2t29De4AZxtgA969_r3EfgN1h50hQ</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Biswas, Bipul</creator><creator>Misra, Mayank</creator><creator>Bisht, Anil Singh</creator><creator>Kumar, Sanat K</creator><creator>Kumaraswamy, Guruswamy</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9442-0775</orcidid><orcidid>https://orcid.org/0000-0002-2700-1228</orcidid><orcidid>https://orcid.org/0000-0002-6690-2221</orcidid></search><sort><creationdate>20210421</creationdate><title>Colloidal assembly by directional ice templating</title><author>Biswas, Bipul ; Misra, Mayank ; Bisht, Anil Singh ; Kumar, Sanat K ; Kumaraswamy, Guruswamy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-8859e1d4b4d7012ffee22561f753629d32a23d860d7d29c85824032ec8368d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregates</topic><topic>Clustering</topic><topic>Coated particles</topic><topic>Colloids</topic><topic>Crosslinking</topic><topic>Crystal growth</topic><topic>Crystal lattices</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Dispersions</topic><topic>Freezing</topic><topic>Ice</topic><topic>Ice crystals</topic><topic>Ice nucleation</topic><topic>Nucleation</topic><topic>Polyethyleneimine</topic><topic>Polymer coatings</topic><topic>Polymers</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Bipul</creatorcontrib><creatorcontrib>Misra, Mayank</creatorcontrib><creatorcontrib>Bisht, Anil Singh</creatorcontrib><creatorcontrib>Kumar, Sanat K</creatorcontrib><creatorcontrib>Kumaraswamy, Guruswamy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Bipul</au><au>Misra, Mayank</au><au>Bisht, Anil Singh</au><au>Kumar, Sanat K</au><au>Kumaraswamy, Guruswamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal assembly by directional ice templating</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>17</volume><issue>15</issue><spage>498</spage><epage>418</epage><pages>498-418</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>We investigate directional ice templating of dilute aqueous colloidal particle dispersions and examine the nature of the assemblies that result. We coat micron-size polystyrene colloids with cross-linkable polymer (polyethyleneimine, PEI), add cross-linker, and subject this dispersion to unidirectional freezing. We work at sufficiently low colloid concentrations, such that the particles do not percolate on freezing. When the aqueous dispersion freezes, ice crystals force polymer-coated particles and cross-linker into close proximity. This results in the formation of cross-linked clusters of particles at ice crystal boundaries. We vary the particle volume fraction from ∼ 2.5 × 10 −3 to ∼ 5.0 × 10 −2 and observe that there is a transition from isolated single particles to increasingly large sized clusters. Most of the clusters formed under these conditions are either linear, two-particle wide chains, or sheet-like aggregates. The probability ( P n ) of clusters containing n particles ( n &gt; 2) obeys a power law P n ∼ n − η , where η strongly depends on the particle concentration in the dispersion, varying from 2.10 (for ∼ 5.0 × 10 −2 ) to 3.03 (for ∼ 2.5 × 10 −3 ). This change in η is qualitatively different from the case of isotropic freezing, where η is particle concentration-independent and depends only on the ice nucleation density. To understand the differences between isotropic and directional ice templating, we performed lattice simulations of a highly simplified model, where ice crystals grow at a constant rate to force clustering. We ignore hydrodynamic interactions and ice growth instabilities. Despite ignoring these experimental details, the simulations capture the experimental results, nearly quantitatively. As the ice crystals grow and the space available to the colloids "closes up" so that the particles cluster to form aggregates, crystallization protocol-induced differences in the geometry of these "closed up" spaces determine the scaling behaviour of P n . We investigate directional ice templating of dilute aqueous colloidal particle dispersions and examine the nature of the assemblies that result.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33729269</pmid><doi>10.1039/d0sm02057e</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9442-0775</orcidid><orcidid>https://orcid.org/0000-0002-2700-1228</orcidid><orcidid>https://orcid.org/0000-0002-6690-2221</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-04, Vol.17 (15), p.498-418
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_D0SM02057E
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Aggregates
Clustering
Coated particles
Colloids
Crosslinking
Crystal growth
Crystal lattices
Crystallization
Crystals
Dispersions
Freezing
Ice
Ice crystals
Ice nucleation
Nucleation
Polyethyleneimine
Polymer coatings
Polymers
Polystyrene
Polystyrene resins
title Colloidal assembly by directional ice templating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20assembly%20by%20directional%20ice%20templating&rft.jtitle=Soft%20matter&rft.au=Biswas,%20Bipul&rft.date=2021-04-21&rft.volume=17&rft.issue=15&rft.spage=498&rft.epage=418&rft.pages=498-418&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d0sm02057e&rft_dat=%3Cproquest_cross%3E2515585227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515585227&rft_id=info:pmid/33729269&rfr_iscdi=true