Seeded laser-induced cavitation for studying high-strain-rate irreversible deformation of soft materials

Characterizing the high-strain-rate and high-strain mechanics of soft materials is critical to understanding the complex behavior of polymers and various dynamic injury mechanisms, including traumatic brain injury. However, their dynamic mechanical deformation under extreme conditions is technically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2020-01, Vol.16 (39), p.96-913
Hauptverfasser: Tiwari, Sacchita, Kazemi-Moridani, Amir, Zheng, Yue, Barney, Christopher W, McLeod, Kelly R, Dougan, Carey E, Crosby, Alfred J, Tew, Gregory N, Peyton, Shelly R, Cai, Shengqiang, Lee, Jae-Hwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 913
container_issue 39
container_start_page 96
container_title Soft matter
container_volume 16
creator Tiwari, Sacchita
Kazemi-Moridani, Amir
Zheng, Yue
Barney, Christopher W
McLeod, Kelly R
Dougan, Carey E
Crosby, Alfred J
Tew, Gregory N
Peyton, Shelly R
Cai, Shengqiang
Lee, Jae-Hwang
description Characterizing the high-strain-rate and high-strain mechanics of soft materials is critical to understanding the complex behavior of polymers and various dynamic injury mechanisms, including traumatic brain injury. However, their dynamic mechanical deformation under extreme conditions is technically difficult to quantify and often includes irreversible damage. To address such challenges, we investigate an experimental method, which allows quantification of the extreme mechanical properties of soft materials using ultrafast stroboscopic imaging of highly reproducible laser-induced cavitation events. As a reference material, we characterize variably cross-linked polydimethylsiloxane specimens using this method. The consistency of the laser-induced cavitation is achieved through the introduction of laser absorbing seed microspheres. Based on a simplified viscoelastic model, representative high-strain-rate shear moduli and viscosities of the soft specimens are quantified across different degrees of crosslinking. The quantified rheological parameters align well with the time-temperature superposition prediction of dynamic mechanical analysis. The presented method offers significant advantages with regard to quantifying high-strain rate, irreversible mechanical properties of soft materials and tissues, compared to other methods that rely upon the cyclic dynamics of cavitation. These advances are anticipated to aid in the understanding of how damage and injury develop in soft materials and tissues. High-strain-rate rheological properties of soft materials are quantified by the observation of a rapidly expanding microscopic cavity.
doi_str_mv 10.1039/d0sm00710b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0SM00710B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450728600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-587080de75eece6a645c1573d13cbf507bc97fe9de72e4b5d02814596c2d782c3</originalsourceid><addsrcrecordid>eNp9kctLxDAQxoMoPlYv3pWKFxGqSZMm6VHXJ6x4WAVvJU2mu1n6WJNW8L83Wl3Bg6eZ4fvNg28Q2if4jGCanRvsa4wFwcUa2iaCsZhLJtdXOX3ZQjveLzCmkhG-ibYoxQnhRG6j-RTAgIkq5cHFtjG9DpVWb7ZTnW2bqGxd5LvevNtmFs3tbB77zinbxE51EFnn4A2ct0UFkYEA10NbW0a-LbsolOCsqvwu2ihDgL3vOELPN9dP47t48nh7P76YxJpx3sWpFFhiAyIF0MAVZ6kmqaCGUF2UKRaFzkQJWSASYEVqcCIJSzOuEyNkoukInQxzl6597cF3eW29hqpSDbS9zxPGpExxJpKAHv9BF23vmnBdoMKqRPJg2QidDpR2rfcOynzpbK3ce05w_ul_foWnD1_-Xwb48HtkX9RgVuiP4QE4GADn9Ur9fWDQj_7T86Up6QdHTZaN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450728600</pqid></control><display><type>article</type><title>Seeded laser-induced cavitation for studying high-strain-rate irreversible deformation of soft materials</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tiwari, Sacchita ; Kazemi-Moridani, Amir ; Zheng, Yue ; Barney, Christopher W ; McLeod, Kelly R ; Dougan, Carey E ; Crosby, Alfred J ; Tew, Gregory N ; Peyton, Shelly R ; Cai, Shengqiang ; Lee, Jae-Hwang</creator><creatorcontrib>Tiwari, Sacchita ; Kazemi-Moridani, Amir ; Zheng, Yue ; Barney, Christopher W ; McLeod, Kelly R ; Dougan, Carey E ; Crosby, Alfred J ; Tew, Gregory N ; Peyton, Shelly R ; Cai, Shengqiang ; Lee, Jae-Hwang</creatorcontrib><description>Characterizing the high-strain-rate and high-strain mechanics of soft materials is critical to understanding the complex behavior of polymers and various dynamic injury mechanisms, including traumatic brain injury. However, their dynamic mechanical deformation under extreme conditions is technically difficult to quantify and often includes irreversible damage. To address such challenges, we investigate an experimental method, which allows quantification of the extreme mechanical properties of soft materials using ultrafast stroboscopic imaging of highly reproducible laser-induced cavitation events. As a reference material, we characterize variably cross-linked polydimethylsiloxane specimens using this method. The consistency of the laser-induced cavitation is achieved through the introduction of laser absorbing seed microspheres. Based on a simplified viscoelastic model, representative high-strain-rate shear moduli and viscosities of the soft specimens are quantified across different degrees of crosslinking. The quantified rheological parameters align well with the time-temperature superposition prediction of dynamic mechanical analysis. The presented method offers significant advantages with regard to quantifying high-strain rate, irreversible mechanical properties of soft materials and tissues, compared to other methods that rely upon the cyclic dynamics of cavitation. These advances are anticipated to aid in the understanding of how damage and injury develop in soft materials and tissues. High-strain-rate rheological properties of soft materials are quantified by the observation of a rapidly expanding microscopic cavity.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d0sm00710b</identifier><identifier>PMID: 33021618</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Cavitation ; Crosslinking ; Damage ; Deformation ; Dynamic mechanical analysis ; Experimental methods ; Head injuries ; Lasers ; Mechanical properties ; Microspheres ; Neuroimaging ; Polydimethylsiloxane ; Polymers ; Rheological properties ; Shear modulus ; Strain ; Strain rate ; Traumatic brain injury ; Viscoelasticity</subject><ispartof>Soft matter, 2020-01, Vol.16 (39), p.96-913</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-587080de75eece6a645c1573d13cbf507bc97fe9de72e4b5d02814596c2d782c3</citedby><cites>FETCH-LOGICAL-c466t-587080de75eece6a645c1573d13cbf507bc97fe9de72e4b5d02814596c2d782c3</cites><orcidid>0000-0002-6852-7680 ; 0000-0002-7572-0526 ; 0000-0003-4496-9553 ; 0000-0002-2546-1044 ; 0000-0002-2165-771X ; 0000-0001-8850-8869 ; 0000-0003-3277-7925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33021618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiwari, Sacchita</creatorcontrib><creatorcontrib>Kazemi-Moridani, Amir</creatorcontrib><creatorcontrib>Zheng, Yue</creatorcontrib><creatorcontrib>Barney, Christopher W</creatorcontrib><creatorcontrib>McLeod, Kelly R</creatorcontrib><creatorcontrib>Dougan, Carey E</creatorcontrib><creatorcontrib>Crosby, Alfred J</creatorcontrib><creatorcontrib>Tew, Gregory N</creatorcontrib><creatorcontrib>Peyton, Shelly R</creatorcontrib><creatorcontrib>Cai, Shengqiang</creatorcontrib><creatorcontrib>Lee, Jae-Hwang</creatorcontrib><title>Seeded laser-induced cavitation for studying high-strain-rate irreversible deformation of soft materials</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Characterizing the high-strain-rate and high-strain mechanics of soft materials is critical to understanding the complex behavior of polymers and various dynamic injury mechanisms, including traumatic brain injury. However, their dynamic mechanical deformation under extreme conditions is technically difficult to quantify and often includes irreversible damage. To address such challenges, we investigate an experimental method, which allows quantification of the extreme mechanical properties of soft materials using ultrafast stroboscopic imaging of highly reproducible laser-induced cavitation events. As a reference material, we characterize variably cross-linked polydimethylsiloxane specimens using this method. The consistency of the laser-induced cavitation is achieved through the introduction of laser absorbing seed microspheres. Based on a simplified viscoelastic model, representative high-strain-rate shear moduli and viscosities of the soft specimens are quantified across different degrees of crosslinking. The quantified rheological parameters align well with the time-temperature superposition prediction of dynamic mechanical analysis. The presented method offers significant advantages with regard to quantifying high-strain rate, irreversible mechanical properties of soft materials and tissues, compared to other methods that rely upon the cyclic dynamics of cavitation. These advances are anticipated to aid in the understanding of how damage and injury develop in soft materials and tissues. High-strain-rate rheological properties of soft materials are quantified by the observation of a rapidly expanding microscopic cavity.</description><subject>Cavitation</subject><subject>Crosslinking</subject><subject>Damage</subject><subject>Deformation</subject><subject>Dynamic mechanical analysis</subject><subject>Experimental methods</subject><subject>Head injuries</subject><subject>Lasers</subject><subject>Mechanical properties</subject><subject>Microspheres</subject><subject>Neuroimaging</subject><subject>Polydimethylsiloxane</subject><subject>Polymers</subject><subject>Rheological properties</subject><subject>Shear modulus</subject><subject>Strain</subject><subject>Strain rate</subject><subject>Traumatic brain injury</subject><subject>Viscoelasticity</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctLxDAQxoMoPlYv3pWKFxGqSZMm6VHXJ6x4WAVvJU2mu1n6WJNW8L83Wl3Bg6eZ4fvNg28Q2if4jGCanRvsa4wFwcUa2iaCsZhLJtdXOX3ZQjveLzCmkhG-ibYoxQnhRG6j-RTAgIkq5cHFtjG9DpVWb7ZTnW2bqGxd5LvevNtmFs3tbB77zinbxE51EFnn4A2ct0UFkYEA10NbW0a-LbsolOCsqvwu2ihDgL3vOELPN9dP47t48nh7P76YxJpx3sWpFFhiAyIF0MAVZ6kmqaCGUF2UKRaFzkQJWSASYEVqcCIJSzOuEyNkoukInQxzl6597cF3eW29hqpSDbS9zxPGpExxJpKAHv9BF23vmnBdoMKqRPJg2QidDpR2rfcOynzpbK3ce05w_ul_foWnD1_-Xwb48HtkX9RgVuiP4QE4GADn9Ur9fWDQj_7T86Up6QdHTZaN</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Tiwari, Sacchita</creator><creator>Kazemi-Moridani, Amir</creator><creator>Zheng, Yue</creator><creator>Barney, Christopher W</creator><creator>McLeod, Kelly R</creator><creator>Dougan, Carey E</creator><creator>Crosby, Alfred J</creator><creator>Tew, Gregory N</creator><creator>Peyton, Shelly R</creator><creator>Cai, Shengqiang</creator><creator>Lee, Jae-Hwang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6852-7680</orcidid><orcidid>https://orcid.org/0000-0002-7572-0526</orcidid><orcidid>https://orcid.org/0000-0003-4496-9553</orcidid><orcidid>https://orcid.org/0000-0002-2546-1044</orcidid><orcidid>https://orcid.org/0000-0002-2165-771X</orcidid><orcidid>https://orcid.org/0000-0001-8850-8869</orcidid><orcidid>https://orcid.org/0000-0003-3277-7925</orcidid></search><sort><creationdate>20200101</creationdate><title>Seeded laser-induced cavitation for studying high-strain-rate irreversible deformation of soft materials</title><author>Tiwari, Sacchita ; Kazemi-Moridani, Amir ; Zheng, Yue ; Barney, Christopher W ; McLeod, Kelly R ; Dougan, Carey E ; Crosby, Alfred J ; Tew, Gregory N ; Peyton, Shelly R ; Cai, Shengqiang ; Lee, Jae-Hwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-587080de75eece6a645c1573d13cbf507bc97fe9de72e4b5d02814596c2d782c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cavitation</topic><topic>Crosslinking</topic><topic>Damage</topic><topic>Deformation</topic><topic>Dynamic mechanical analysis</topic><topic>Experimental methods</topic><topic>Head injuries</topic><topic>Lasers</topic><topic>Mechanical properties</topic><topic>Microspheres</topic><topic>Neuroimaging</topic><topic>Polydimethylsiloxane</topic><topic>Polymers</topic><topic>Rheological properties</topic><topic>Shear modulus</topic><topic>Strain</topic><topic>Strain rate</topic><topic>Traumatic brain injury</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiwari, Sacchita</creatorcontrib><creatorcontrib>Kazemi-Moridani, Amir</creatorcontrib><creatorcontrib>Zheng, Yue</creatorcontrib><creatorcontrib>Barney, Christopher W</creatorcontrib><creatorcontrib>McLeod, Kelly R</creatorcontrib><creatorcontrib>Dougan, Carey E</creatorcontrib><creatorcontrib>Crosby, Alfred J</creatorcontrib><creatorcontrib>Tew, Gregory N</creatorcontrib><creatorcontrib>Peyton, Shelly R</creatorcontrib><creatorcontrib>Cai, Shengqiang</creatorcontrib><creatorcontrib>Lee, Jae-Hwang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiwari, Sacchita</au><au>Kazemi-Moridani, Amir</au><au>Zheng, Yue</au><au>Barney, Christopher W</au><au>McLeod, Kelly R</au><au>Dougan, Carey E</au><au>Crosby, Alfred J</au><au>Tew, Gregory N</au><au>Peyton, Shelly R</au><au>Cai, Shengqiang</au><au>Lee, Jae-Hwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seeded laser-induced cavitation for studying high-strain-rate irreversible deformation of soft materials</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>16</volume><issue>39</issue><spage>96</spage><epage>913</epage><pages>96-913</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Characterizing the high-strain-rate and high-strain mechanics of soft materials is critical to understanding the complex behavior of polymers and various dynamic injury mechanisms, including traumatic brain injury. However, their dynamic mechanical deformation under extreme conditions is technically difficult to quantify and often includes irreversible damage. To address such challenges, we investigate an experimental method, which allows quantification of the extreme mechanical properties of soft materials using ultrafast stroboscopic imaging of highly reproducible laser-induced cavitation events. As a reference material, we characterize variably cross-linked polydimethylsiloxane specimens using this method. The consistency of the laser-induced cavitation is achieved through the introduction of laser absorbing seed microspheres. Based on a simplified viscoelastic model, representative high-strain-rate shear moduli and viscosities of the soft specimens are quantified across different degrees of crosslinking. The quantified rheological parameters align well with the time-temperature superposition prediction of dynamic mechanical analysis. The presented method offers significant advantages with regard to quantifying high-strain rate, irreversible mechanical properties of soft materials and tissues, compared to other methods that rely upon the cyclic dynamics of cavitation. These advances are anticipated to aid in the understanding of how damage and injury develop in soft materials and tissues. High-strain-rate rheological properties of soft materials are quantified by the observation of a rapidly expanding microscopic cavity.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33021618</pmid><doi>10.1039/d0sm00710b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6852-7680</orcidid><orcidid>https://orcid.org/0000-0002-7572-0526</orcidid><orcidid>https://orcid.org/0000-0003-4496-9553</orcidid><orcidid>https://orcid.org/0000-0002-2546-1044</orcidid><orcidid>https://orcid.org/0000-0002-2165-771X</orcidid><orcidid>https://orcid.org/0000-0001-8850-8869</orcidid><orcidid>https://orcid.org/0000-0003-3277-7925</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2020-01, Vol.16 (39), p.96-913
issn 1744-683X
1744-6848
language eng
recordid cdi_crossref_primary_10_1039_D0SM00710B
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Cavitation
Crosslinking
Damage
Deformation
Dynamic mechanical analysis
Experimental methods
Head injuries
Lasers
Mechanical properties
Microspheres
Neuroimaging
Polydimethylsiloxane
Polymers
Rheological properties
Shear modulus
Strain
Strain rate
Traumatic brain injury
Viscoelasticity
title Seeded laser-induced cavitation for studying high-strain-rate irreversible deformation of soft materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seeded%20laser-induced%20cavitation%20for%20studying%20high-strain-rate%20irreversible%20deformation%20of%20soft%20materials&rft.jtitle=Soft%20matter&rft.au=Tiwari,%20Sacchita&rft.date=2020-01-01&rft.volume=16&rft.issue=39&rft.spage=96&rft.epage=913&rft.pages=96-913&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d0sm00710b&rft_dat=%3Cproquest_cross%3E2450728600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450728600&rft_id=info:pmid/33021618&rfr_iscdi=true