A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics

Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications. In this article, the outdoor (1 sun) and indoor (2700 K LED) performance of an inverted OPV, PTB7-Th:PC 70 BM, with three different solution-processed el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable energy & fuels 2020-07, Vol.4 (7), p.3378-3387
Hauptverfasser: Torimtubun, Alfonsina Abat Amelenan, Sánchez, José G, Pallarès, Josep, Marsal, Lluis F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3387
container_issue 7
container_start_page 3378
container_title Sustainable energy & fuels
container_volume 4
creator Torimtubun, Alfonsina Abat Amelenan
Sánchez, José G
Pallarès, Josep
Marsal, Lluis F
description Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications. In this article, the outdoor (1 sun) and indoor (2700 K LED) performance of an inverted OPV, PTB7-Th:PC 70 BM, with three different solution-processed electron transport layers (ETLs = PFN, TiO x , and ZnO) was compared. The morphological, optical, and electrical measurements indicated the strong dependency of the OPV performance on the illumination conditions. The sample with PFN-ETL showed the highest outdoor performance with a power conversion efficiency (PCE) of 10.55% and the best reported fill factor (FF) of 75.00% among the PTB7-Th:PC 70 BM-based OPVs; surprisingly, it exhibited the lowest performance when illuminated under 250-2000 lux 2700 K LED light. Meanwhile, the lowest outdoor performance was demonstrated by ZnO with a PCE of 10.03%; it displayed the best indoor performance with a PCE of 13.94% under 1000 lux LED light and a PCE of up to 16.49% under 1750 lux LED light. The changes in the FF values could be estimated by incorporating the parasitic resistance effect due to the type of ETL used. Additionally, using impedance spectroscopy, we observed that the indoor performance agreed well with the trend of the charge collection efficiency. Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications.
doi_str_mv 10.1039/d0se00353k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0SE00353K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418753731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-1a816400ec1cfaa834098d12ce67dcd51435b1492dc8b710761f8010582f92573</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxRdRsFQv3oWIN2F1kux2d4-l1g8seFDPS5pMulvbZE3SQk_-66atqCdPMzC_ecN7kyRnFK4p8OpGgUcAnvP3g6THeFWmWQXs8E9_nJx6PwcARlnG8qKXfA6JFKGxCklrAjotJBI0s9YgutbMiOg6Z4VsiLaOhAaJtMvOYYPGt2skPqzUhlgdt5WNRBclrFsKs5NptnWJJsQxsW4mTCtJ19hg13YRRCv9SXKkxcLj6XftJ29349fRQzp5vn8cDSep5FCElIqSDjIAlFRqIUqeQVUqyiQOCiVVTjOeT2lWMSXLaUGhGFBdAoW8ZLqKRnk_udzrRjcfK_ShntuVM_FkzTJaFjkvOI3U1Z6SznrvUNeda5fCbWoK9Tbj-hZexruMnyJ8sYedlz_c7w_qTunInP_H8C-wMIWL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418753731</pqid></control><display><type>article</type><title>A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics</title><source>Royal Society Of Chemistry Journals</source><creator>Torimtubun, Alfonsina Abat Amelenan ; Sánchez, José G ; Pallarès, Josep ; Marsal, Lluis F</creator><creatorcontrib>Torimtubun, Alfonsina Abat Amelenan ; Sánchez, José G ; Pallarès, Josep ; Marsal, Lluis F</creatorcontrib><description>Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications. In this article, the outdoor (1 sun) and indoor (2700 K LED) performance of an inverted OPV, PTB7-Th:PC 70 BM, with three different solution-processed electron transport layers (ETLs = PFN, TiO x , and ZnO) was compared. The morphological, optical, and electrical measurements indicated the strong dependency of the OPV performance on the illumination conditions. The sample with PFN-ETL showed the highest outdoor performance with a power conversion efficiency (PCE) of 10.55% and the best reported fill factor (FF) of 75.00% among the PTB7-Th:PC 70 BM-based OPVs; surprisingly, it exhibited the lowest performance when illuminated under 250-2000 lux 2700 K LED light. Meanwhile, the lowest outdoor performance was demonstrated by ZnO with a PCE of 10.03%; it displayed the best indoor performance with a PCE of 13.94% under 1000 lux LED light and a PCE of up to 16.49% under 1750 lux LED light. The changes in the FF values could be estimated by incorporating the parasitic resistance effect due to the type of ETL used. Additionally, using impedance spectroscopy, we observed that the indoor performance agreed well with the trend of the charge collection efficiency. Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications.</description><identifier>ISSN: 2398-4902</identifier><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/d0se00353k</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Capacitance ; Charge efficiency ; Electrical measurement ; Electron transport ; Energy conversion efficiency ; Energy harvesting ; Indoor environments ; Light emitting diodes ; Light sources ; Parasite resistance ; Performance enhancement ; Photovoltaic cells ; Photovoltaics ; Power consumption ; Power management ; Resistance factors ; Spectroscopy ; Spectrum analysis ; Titanium oxides ; Work functions ; Zinc oxide</subject><ispartof>Sustainable energy &amp; fuels, 2020-07, Vol.4 (7), p.3378-3387</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-1a816400ec1cfaa834098d12ce67dcd51435b1492dc8b710761f8010582f92573</citedby><cites>FETCH-LOGICAL-c307t-1a816400ec1cfaa834098d12ce67dcd51435b1492dc8b710761f8010582f92573</cites><orcidid>0000-0001-7221-5383 ; 0000-0002-2755-8878 ; 0000-0002-5976-1408 ; 0000-0001-8012-4772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Torimtubun, Alfonsina Abat Amelenan</creatorcontrib><creatorcontrib>Sánchez, José G</creatorcontrib><creatorcontrib>Pallarès, Josep</creatorcontrib><creatorcontrib>Marsal, Lluis F</creatorcontrib><title>A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics</title><title>Sustainable energy &amp; fuels</title><description>Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications. In this article, the outdoor (1 sun) and indoor (2700 K LED) performance of an inverted OPV, PTB7-Th:PC 70 BM, with three different solution-processed electron transport layers (ETLs = PFN, TiO x , and ZnO) was compared. The morphological, optical, and electrical measurements indicated the strong dependency of the OPV performance on the illumination conditions. The sample with PFN-ETL showed the highest outdoor performance with a power conversion efficiency (PCE) of 10.55% and the best reported fill factor (FF) of 75.00% among the PTB7-Th:PC 70 BM-based OPVs; surprisingly, it exhibited the lowest performance when illuminated under 250-2000 lux 2700 K LED light. Meanwhile, the lowest outdoor performance was demonstrated by ZnO with a PCE of 10.03%; it displayed the best indoor performance with a PCE of 13.94% under 1000 lux LED light and a PCE of up to 16.49% under 1750 lux LED light. The changes in the FF values could be estimated by incorporating the parasitic resistance effect due to the type of ETL used. Additionally, using impedance spectroscopy, we observed that the indoor performance agreed well with the trend of the charge collection efficiency. Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications.</description><subject>Capacitance</subject><subject>Charge efficiency</subject><subject>Electrical measurement</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Indoor environments</subject><subject>Light emitting diodes</subject><subject>Light sources</subject><subject>Parasite resistance</subject><subject>Performance enhancement</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Resistance factors</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Titanium oxides</subject><subject>Work functions</subject><subject>Zinc oxide</subject><issn>2398-4902</issn><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1LAzEQxRdRsFQv3oWIN2F1kux2d4-l1g8seFDPS5pMulvbZE3SQk_-66atqCdPMzC_ecN7kyRnFK4p8OpGgUcAnvP3g6THeFWmWQXs8E9_nJx6PwcARlnG8qKXfA6JFKGxCklrAjotJBI0s9YgutbMiOg6Z4VsiLaOhAaJtMvOYYPGt2skPqzUhlgdt5WNRBclrFsKs5NptnWJJsQxsW4mTCtJ19hg13YRRCv9SXKkxcLj6XftJ29349fRQzp5vn8cDSep5FCElIqSDjIAlFRqIUqeQVUqyiQOCiVVTjOeT2lWMSXLaUGhGFBdAoW8ZLqKRnk_udzrRjcfK_ShntuVM_FkzTJaFjkvOI3U1Z6SznrvUNeda5fCbWoK9Tbj-hZexruMnyJ8sYedlz_c7w_qTunInP_H8C-wMIWL</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Torimtubun, Alfonsina Abat Amelenan</creator><creator>Sánchez, José G</creator><creator>Pallarès, Josep</creator><creator>Marsal, Lluis F</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-7221-5383</orcidid><orcidid>https://orcid.org/0000-0002-2755-8878</orcidid><orcidid>https://orcid.org/0000-0002-5976-1408</orcidid><orcidid>https://orcid.org/0000-0001-8012-4772</orcidid></search><sort><creationdate>20200701</creationdate><title>A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics</title><author>Torimtubun, Alfonsina Abat Amelenan ; Sánchez, José G ; Pallarès, Josep ; Marsal, Lluis F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-1a816400ec1cfaa834098d12ce67dcd51435b1492dc8b710761f8010582f92573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Capacitance</topic><topic>Charge efficiency</topic><topic>Electrical measurement</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Indoor environments</topic><topic>Light emitting diodes</topic><topic>Light sources</topic><topic>Parasite resistance</topic><topic>Performance enhancement</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Resistance factors</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Titanium oxides</topic><topic>Work functions</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torimtubun, Alfonsina Abat Amelenan</creatorcontrib><creatorcontrib>Sánchez, José G</creatorcontrib><creatorcontrib>Pallarès, Josep</creatorcontrib><creatorcontrib>Marsal, Lluis F</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torimtubun, Alfonsina Abat Amelenan</au><au>Sánchez, José G</au><au>Pallarès, Josep</au><au>Marsal, Lluis F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics</atitle><jtitle>Sustainable energy &amp; fuels</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>4</volume><issue>7</issue><spage>3378</spage><epage>3387</epage><pages>3378-3387</pages><issn>2398-4902</issn><eissn>2398-4902</eissn><abstract>Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications. In this article, the outdoor (1 sun) and indoor (2700 K LED) performance of an inverted OPV, PTB7-Th:PC 70 BM, with three different solution-processed electron transport layers (ETLs = PFN, TiO x , and ZnO) was compared. The morphological, optical, and electrical measurements indicated the strong dependency of the OPV performance on the illumination conditions. The sample with PFN-ETL showed the highest outdoor performance with a power conversion efficiency (PCE) of 10.55% and the best reported fill factor (FF) of 75.00% among the PTB7-Th:PC 70 BM-based OPVs; surprisingly, it exhibited the lowest performance when illuminated under 250-2000 lux 2700 K LED light. Meanwhile, the lowest outdoor performance was demonstrated by ZnO with a PCE of 10.03%; it displayed the best indoor performance with a PCE of 13.94% under 1000 lux LED light and a PCE of up to 16.49% under 1750 lux LED light. The changes in the FF values could be estimated by incorporating the parasitic resistance effect due to the type of ETL used. Additionally, using impedance spectroscopy, we observed that the indoor performance agreed well with the trend of the charge collection efficiency. Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0se00353k</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7221-5383</orcidid><orcidid>https://orcid.org/0000-0002-2755-8878</orcidid><orcidid>https://orcid.org/0000-0002-5976-1408</orcidid><orcidid>https://orcid.org/0000-0001-8012-4772</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2398-4902
ispartof Sustainable energy & fuels, 2020-07, Vol.4 (7), p.3378-3387
issn 2398-4902
2398-4902
language eng
recordid cdi_crossref_primary_10_1039_D0SE00353K
source Royal Society Of Chemistry Journals
subjects Capacitance
Charge efficiency
Electrical measurement
Electron transport
Energy conversion efficiency
Energy harvesting
Indoor environments
Light emitting diodes
Light sources
Parasite resistance
Performance enhancement
Photovoltaic cells
Photovoltaics
Power consumption
Power management
Resistance factors
Spectroscopy
Spectrum analysis
Titanium oxides
Work functions
Zinc oxide
title A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cathode%20interface%20engineering%20approach%20for%20the%20comprehensive%20study%20of%20indoor%20performance%20enhancement%20in%20organic%20photovoltaics&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Torimtubun,%20Alfonsina%20Abat%20Amelenan&rft.date=2020-07-01&rft.volume=4&rft.issue=7&rft.spage=3378&rft.epage=3387&rft.pages=3378-3387&rft.issn=2398-4902&rft.eissn=2398-4902&rft_id=info:doi/10.1039/d0se00353k&rft_dat=%3Cproquest_cross%3E2418753731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418753731&rft_id=info:pmid/&rfr_iscdi=true