A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics
Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications. In this article, the outdoor (1 sun) and indoor (2700 K LED) performance of an inverted OPV, PTB7-Th:PC 70 BM, with three different solution-processed el...
Gespeichert in:
Veröffentlicht in: | Sustainable energy & fuels 2020-07, Vol.4 (7), p.3378-3387 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3387 |
---|---|
container_issue | 7 |
container_start_page | 3378 |
container_title | Sustainable energy & fuels |
container_volume | 4 |
creator | Torimtubun, Alfonsina Abat Amelenan Sánchez, José G Pallarès, Josep Marsal, Lluis F |
description | Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications. In this article, the outdoor (1 sun) and indoor (2700 K LED) performance of an inverted OPV, PTB7-Th:PC
70
BM, with three different solution-processed electron transport layers (ETLs = PFN, TiO
x
, and ZnO) was compared. The morphological, optical, and electrical measurements indicated the strong dependency of the OPV performance on the illumination conditions. The sample with PFN-ETL showed the highest outdoor performance with a power conversion efficiency (PCE) of 10.55% and the best reported fill factor (FF) of 75.00% among the PTB7-Th:PC
70
BM-based OPVs; surprisingly, it exhibited the lowest performance when illuminated under 250-2000 lux 2700 K LED light. Meanwhile, the lowest outdoor performance was demonstrated by ZnO with a PCE of 10.03%; it displayed the best indoor performance with a PCE of 13.94% under 1000 lux LED light and a PCE of up to 16.49% under 1750 lux LED light. The changes in the FF values could be estimated by incorporating the parasitic resistance effect due to the type of ETL used. Additionally, using impedance spectroscopy, we observed that the indoor performance agreed well with the trend of the charge collection efficiency.
Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications. |
doi_str_mv | 10.1039/d0se00353k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0SE00353K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418753731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-1a816400ec1cfaa834098d12ce67dcd51435b1492dc8b710761f8010582f92573</originalsourceid><addsrcrecordid>eNp9kc1LAzEQxRdRsFQv3oWIN2F1kux2d4-l1g8seFDPS5pMulvbZE3SQk_-66atqCdPMzC_ecN7kyRnFK4p8OpGgUcAnvP3g6THeFWmWQXs8E9_nJx6PwcARlnG8qKXfA6JFKGxCklrAjotJBI0s9YgutbMiOg6Z4VsiLaOhAaJtMvOYYPGt2skPqzUhlgdt5WNRBclrFsKs5NptnWJJsQxsW4mTCtJ19hg13YRRCv9SXKkxcLj6XftJ29349fRQzp5vn8cDSep5FCElIqSDjIAlFRqIUqeQVUqyiQOCiVVTjOeT2lWMSXLaUGhGFBdAoW8ZLqKRnk_udzrRjcfK_ShntuVM_FkzTJaFjkvOI3U1Z6SznrvUNeda5fCbWoK9Tbj-hZexruMnyJ8sYedlz_c7w_qTunInP_H8C-wMIWL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418753731</pqid></control><display><type>article</type><title>A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics</title><source>Royal Society Of Chemistry Journals</source><creator>Torimtubun, Alfonsina Abat Amelenan ; Sánchez, José G ; Pallarès, Josep ; Marsal, Lluis F</creator><creatorcontrib>Torimtubun, Alfonsina Abat Amelenan ; Sánchez, José G ; Pallarès, Josep ; Marsal, Lluis F</creatorcontrib><description>Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications. In this article, the outdoor (1 sun) and indoor (2700 K LED) performance of an inverted OPV, PTB7-Th:PC
70
BM, with three different solution-processed electron transport layers (ETLs = PFN, TiO
x
, and ZnO) was compared. The morphological, optical, and electrical measurements indicated the strong dependency of the OPV performance on the illumination conditions. The sample with PFN-ETL showed the highest outdoor performance with a power conversion efficiency (PCE) of 10.55% and the best reported fill factor (FF) of 75.00% among the PTB7-Th:PC
70
BM-based OPVs; surprisingly, it exhibited the lowest performance when illuminated under 250-2000 lux 2700 K LED light. Meanwhile, the lowest outdoor performance was demonstrated by ZnO with a PCE of 10.03%; it displayed the best indoor performance with a PCE of 13.94% under 1000 lux LED light and a PCE of up to 16.49% under 1750 lux LED light. The changes in the FF values could be estimated by incorporating the parasitic resistance effect due to the type of ETL used. Additionally, using impedance spectroscopy, we observed that the indoor performance agreed well with the trend of the charge collection efficiency.
Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications.</description><identifier>ISSN: 2398-4902</identifier><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/d0se00353k</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Capacitance ; Charge efficiency ; Electrical measurement ; Electron transport ; Energy conversion efficiency ; Energy harvesting ; Indoor environments ; Light emitting diodes ; Light sources ; Parasite resistance ; Performance enhancement ; Photovoltaic cells ; Photovoltaics ; Power consumption ; Power management ; Resistance factors ; Spectroscopy ; Spectrum analysis ; Titanium oxides ; Work functions ; Zinc oxide</subject><ispartof>Sustainable energy & fuels, 2020-07, Vol.4 (7), p.3378-3387</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-1a816400ec1cfaa834098d12ce67dcd51435b1492dc8b710761f8010582f92573</citedby><cites>FETCH-LOGICAL-c307t-1a816400ec1cfaa834098d12ce67dcd51435b1492dc8b710761f8010582f92573</cites><orcidid>0000-0001-7221-5383 ; 0000-0002-2755-8878 ; 0000-0002-5976-1408 ; 0000-0001-8012-4772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Torimtubun, Alfonsina Abat Amelenan</creatorcontrib><creatorcontrib>Sánchez, José G</creatorcontrib><creatorcontrib>Pallarès, Josep</creatorcontrib><creatorcontrib>Marsal, Lluis F</creatorcontrib><title>A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics</title><title>Sustainable energy & fuels</title><description>Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications. In this article, the outdoor (1 sun) and indoor (2700 K LED) performance of an inverted OPV, PTB7-Th:PC
70
BM, with three different solution-processed electron transport layers (ETLs = PFN, TiO
x
, and ZnO) was compared. The morphological, optical, and electrical measurements indicated the strong dependency of the OPV performance on the illumination conditions. The sample with PFN-ETL showed the highest outdoor performance with a power conversion efficiency (PCE) of 10.55% and the best reported fill factor (FF) of 75.00% among the PTB7-Th:PC
70
BM-based OPVs; surprisingly, it exhibited the lowest performance when illuminated under 250-2000 lux 2700 K LED light. Meanwhile, the lowest outdoor performance was demonstrated by ZnO with a PCE of 10.03%; it displayed the best indoor performance with a PCE of 13.94% under 1000 lux LED light and a PCE of up to 16.49% under 1750 lux LED light. The changes in the FF values could be estimated by incorporating the parasitic resistance effect due to the type of ETL used. Additionally, using impedance spectroscopy, we observed that the indoor performance agreed well with the trend of the charge collection efficiency.
Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications.</description><subject>Capacitance</subject><subject>Charge efficiency</subject><subject>Electrical measurement</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Energy harvesting</subject><subject>Indoor environments</subject><subject>Light emitting diodes</subject><subject>Light sources</subject><subject>Parasite resistance</subject><subject>Performance enhancement</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Resistance factors</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Titanium oxides</subject><subject>Work functions</subject><subject>Zinc oxide</subject><issn>2398-4902</issn><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1LAzEQxRdRsFQv3oWIN2F1kux2d4-l1g8seFDPS5pMulvbZE3SQk_-66atqCdPMzC_ecN7kyRnFK4p8OpGgUcAnvP3g6THeFWmWQXs8E9_nJx6PwcARlnG8qKXfA6JFKGxCklrAjotJBI0s9YgutbMiOg6Z4VsiLaOhAaJtMvOYYPGt2skPqzUhlgdt5WNRBclrFsKs5NptnWJJsQxsW4mTCtJ19hg13YRRCv9SXKkxcLj6XftJ29349fRQzp5vn8cDSep5FCElIqSDjIAlFRqIUqeQVUqyiQOCiVVTjOeT2lWMSXLaUGhGFBdAoW8ZLqKRnk_udzrRjcfK_ShntuVM_FkzTJaFjkvOI3U1Z6SznrvUNeda5fCbWoK9Tbj-hZexruMnyJ8sYedlz_c7w_qTunInP_H8C-wMIWL</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Torimtubun, Alfonsina Abat Amelenan</creator><creator>Sánchez, José G</creator><creator>Pallarès, Josep</creator><creator>Marsal, Lluis F</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-7221-5383</orcidid><orcidid>https://orcid.org/0000-0002-2755-8878</orcidid><orcidid>https://orcid.org/0000-0002-5976-1408</orcidid><orcidid>https://orcid.org/0000-0001-8012-4772</orcidid></search><sort><creationdate>20200701</creationdate><title>A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics</title><author>Torimtubun, Alfonsina Abat Amelenan ; Sánchez, José G ; Pallarès, Josep ; Marsal, Lluis F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-1a816400ec1cfaa834098d12ce67dcd51435b1492dc8b710761f8010582f92573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Capacitance</topic><topic>Charge efficiency</topic><topic>Electrical measurement</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Energy harvesting</topic><topic>Indoor environments</topic><topic>Light emitting diodes</topic><topic>Light sources</topic><topic>Parasite resistance</topic><topic>Performance enhancement</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Resistance factors</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Titanium oxides</topic><topic>Work functions</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torimtubun, Alfonsina Abat Amelenan</creatorcontrib><creatorcontrib>Sánchez, José G</creatorcontrib><creatorcontrib>Pallarès, Josep</creatorcontrib><creatorcontrib>Marsal, Lluis F</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torimtubun, Alfonsina Abat Amelenan</au><au>Sánchez, José G</au><au>Pallarès, Josep</au><au>Marsal, Lluis F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics</atitle><jtitle>Sustainable energy & fuels</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>4</volume><issue>7</issue><spage>3378</spage><epage>3387</epage><pages>3378-3387</pages><issn>2398-4902</issn><eissn>2398-4902</eissn><abstract>Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications. In this article, the outdoor (1 sun) and indoor (2700 K LED) performance of an inverted OPV, PTB7-Th:PC
70
BM, with three different solution-processed electron transport layers (ETLs = PFN, TiO
x
, and ZnO) was compared. The morphological, optical, and electrical measurements indicated the strong dependency of the OPV performance on the illumination conditions. The sample with PFN-ETL showed the highest outdoor performance with a power conversion efficiency (PCE) of 10.55% and the best reported fill factor (FF) of 75.00% among the PTB7-Th:PC
70
BM-based OPVs; surprisingly, it exhibited the lowest performance when illuminated under 250-2000 lux 2700 K LED light. Meanwhile, the lowest outdoor performance was demonstrated by ZnO with a PCE of 10.03%; it displayed the best indoor performance with a PCE of 13.94% under 1000 lux LED light and a PCE of up to 16.49% under 1750 lux LED light. The changes in the FF values could be estimated by incorporating the parasitic resistance effect due to the type of ETL used. Additionally, using impedance spectroscopy, we observed that the indoor performance agreed well with the trend of the charge collection efficiency.
Organic photovoltaics (OPVs) have a promising future in reliable energy harvesting to drive low power consumption devices for indoor applications.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0se00353k</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7221-5383</orcidid><orcidid>https://orcid.org/0000-0002-2755-8878</orcidid><orcidid>https://orcid.org/0000-0002-5976-1408</orcidid><orcidid>https://orcid.org/0000-0001-8012-4772</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2398-4902 |
ispartof | Sustainable energy & fuels, 2020-07, Vol.4 (7), p.3378-3387 |
issn | 2398-4902 2398-4902 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0SE00353K |
source | Royal Society Of Chemistry Journals |
subjects | Capacitance Charge efficiency Electrical measurement Electron transport Energy conversion efficiency Energy harvesting Indoor environments Light emitting diodes Light sources Parasite resistance Performance enhancement Photovoltaic cells Photovoltaics Power consumption Power management Resistance factors Spectroscopy Spectrum analysis Titanium oxides Work functions Zinc oxide |
title | A cathode interface engineering approach for the comprehensive study of indoor performance enhancement in organic photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cathode%20interface%20engineering%20approach%20for%20the%20comprehensive%20study%20of%20indoor%20performance%20enhancement%20in%20organic%20photovoltaics&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Torimtubun,%20Alfonsina%20Abat%20Amelenan&rft.date=2020-07-01&rft.volume=4&rft.issue=7&rft.spage=3378&rft.epage=3387&rft.pages=3378-3387&rft.issn=2398-4902&rft.eissn=2398-4902&rft_id=info:doi/10.1039/d0se00353k&rft_dat=%3Cproquest_cross%3E2418753731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418753731&rft_id=info:pmid/&rfr_iscdi=true |