Acid-base chemistry at the single ion limit

We present the results of acid-base experiments performed at the single ion (H + or OH − ) limit in ∼6 aL volume nanopores incorporating electrochemical zero-mode waveguides (E-ZMWs). At pH 3 each E-ZMW nanopore contains ca . 3600H + ions, and application of a negative electrochemical potential to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2020-10, Vol.11 (4), p.1951-1958
Hauptverfasser: Sundaresan, Vignesh, Bohn, Paul W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1958
container_issue 4
container_start_page 1951
container_title Chemical science (Cambridge)
container_volume 11
creator Sundaresan, Vignesh
Bohn, Paul W
description We present the results of acid-base experiments performed at the single ion (H + or OH − ) limit in ∼6 aL volume nanopores incorporating electrochemical zero-mode waveguides (E-ZMWs). At pH 3 each E-ZMW nanopore contains ca . 3600H + ions, and application of a negative electrochemical potential to the gold working electrode/optical cladding layer reduces H + to H 2 , thereby depleting H + and increasing the local pH within the nanopore. The change in pH was quantified by tracking the intensity of fluorescein, a pH-responsive fluorophore whose intensity increases with pH. This behavior was translated to the single ion limit by changing the initial pH of the electrolyte solution to pH 6, at which the average pore occupancy 〈 n 〉 pore ∼3.6H + /nanopore. Application of an electrochemical potential sufficiently negative to change the local pH to pH 7 reduces the proton nanopore occupancy to 〈 n 〉 pore ∼0.36H + /nanopore, demonstrating that the approach is sensitive to single H + manipulations, as evidenced by clear potential-dependent changes in fluorescein emission intensity. In addition, at high overpotential, the observed fluorescence intensity exceeded the value predicted from the fluorescence intensity-pH calibration, an observation attributed to the nucleation of H 2 nanobubbles as confirmed both by calculations and the behavior of non-pH responsive Alexa 488 fluorophore. Apart from enhancing fundamental understanding, the approach described here opens the door to applications requiring ultrasensitive ion sensing, based on the optical detection of H + population at the single ion limit. Visualizing dynamic change in the number of protons during electroreduction of protons in attoliter volume zero-mode waveguides.
doi_str_mv 10.1039/d0sc03756g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0SC03756G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540719626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-a734a0b470453468f50551fbfbbd8ed1360b4d4cb69fc6977b31a0ed4d5da4663</originalsourceid><addsrcrecordid>eNp90UlLAzEYBuAgii21F-_CiBdRRrOncxFKXaHgQT2HbNOmzFKTGaH_3ulCRQ_mksD38JKPF4BTBG8QJNmthdFAIhifHYA-hhSlnJHscP_GsAeGMS5gdwhBDItj0CMUYYIy1AfXY-NtqlV0iZm70scmrBLVJM3cJdFXs8Ilvq6Swpe-OQFHuSqiG-7uAfh4fHifPKfT16eXyXiaGkpQkypBqIKaCkgZoXyUM8gYynWutR05iwjvhpYazbPc8EwITZCCzlLLrKKckwG42-YuW106a1zVBFXIZfClCitZKy9_Tyo_l7P6S44Qx3gTcLkLCPVn62Iju8WMKwpVubqNEjMKBco4XtOLP3RRt6Hq1pOYMswQ4wJ16mqrTKhjDC7ffwZBua5B3sO3yaaGpw6fb3GIZu9-apJLm3fm7D9DvgE0ooxS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452515671</pqid></control><display><type>article</type><title>Acid-base chemistry at the single ion limit</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Sundaresan, Vignesh ; Bohn, Paul W</creator><creatorcontrib>Sundaresan, Vignesh ; Bohn, Paul W</creatorcontrib><description>We present the results of acid-base experiments performed at the single ion (H + or OH − ) limit in ∼6 aL volume nanopores incorporating electrochemical zero-mode waveguides (E-ZMWs). At pH 3 each E-ZMW nanopore contains ca . 3600H + ions, and application of a negative electrochemical potential to the gold working electrode/optical cladding layer reduces H + to H 2 , thereby depleting H + and increasing the local pH within the nanopore. The change in pH was quantified by tracking the intensity of fluorescein, a pH-responsive fluorophore whose intensity increases with pH. This behavior was translated to the single ion limit by changing the initial pH of the electrolyte solution to pH 6, at which the average pore occupancy 〈 n 〉 pore ∼3.6H + /nanopore. Application of an electrochemical potential sufficiently negative to change the local pH to pH 7 reduces the proton nanopore occupancy to 〈 n 〉 pore ∼0.36H + /nanopore, demonstrating that the approach is sensitive to single H + manipulations, as evidenced by clear potential-dependent changes in fluorescein emission intensity. In addition, at high overpotential, the observed fluorescence intensity exceeded the value predicted from the fluorescence intensity-pH calibration, an observation attributed to the nucleation of H 2 nanobubbles as confirmed both by calculations and the behavior of non-pH responsive Alexa 488 fluorophore. Apart from enhancing fundamental understanding, the approach described here opens the door to applications requiring ultrasensitive ion sensing, based on the optical detection of H + population at the single ion limit. Visualizing dynamic change in the number of protons during electroreduction of protons in attoliter volume zero-mode waveguides.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d0sc03756g</identifier><identifier>PMID: 34123191</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Buffers (chemistry) ; Buffing ; Calibration ; Chemistry ; Electrochemical potential ; Fluorescein ; Fluorescence ; Frames per second ; Nucleation ; Occupancy ; Porosity ; Protons ; Structural analysis ; Tracking ; Waveguides</subject><ispartof>Chemical science (Cambridge), 2020-10, Vol.11 (4), p.1951-1958</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-a734a0b470453468f50551fbfbbd8ed1360b4d4cb69fc6977b31a0ed4d5da4663</citedby><cites>FETCH-LOGICAL-c431t-a734a0b470453468f50551fbfbbd8ed1360b4d4cb69fc6977b31a0ed4d5da4663</cites><orcidid>0000-0001-9052-0349 ; 0000-0001-9390-1681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162266/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162266/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Sundaresan, Vignesh</creatorcontrib><creatorcontrib>Bohn, Paul W</creatorcontrib><title>Acid-base chemistry at the single ion limit</title><title>Chemical science (Cambridge)</title><description>We present the results of acid-base experiments performed at the single ion (H + or OH − ) limit in ∼6 aL volume nanopores incorporating electrochemical zero-mode waveguides (E-ZMWs). At pH 3 each E-ZMW nanopore contains ca . 3600H + ions, and application of a negative electrochemical potential to the gold working electrode/optical cladding layer reduces H + to H 2 , thereby depleting H + and increasing the local pH within the nanopore. The change in pH was quantified by tracking the intensity of fluorescein, a pH-responsive fluorophore whose intensity increases with pH. This behavior was translated to the single ion limit by changing the initial pH of the electrolyte solution to pH 6, at which the average pore occupancy 〈 n 〉 pore ∼3.6H + /nanopore. Application of an electrochemical potential sufficiently negative to change the local pH to pH 7 reduces the proton nanopore occupancy to 〈 n 〉 pore ∼0.36H + /nanopore, demonstrating that the approach is sensitive to single H + manipulations, as evidenced by clear potential-dependent changes in fluorescein emission intensity. In addition, at high overpotential, the observed fluorescence intensity exceeded the value predicted from the fluorescence intensity-pH calibration, an observation attributed to the nucleation of H 2 nanobubbles as confirmed both by calculations and the behavior of non-pH responsive Alexa 488 fluorophore. Apart from enhancing fundamental understanding, the approach described here opens the door to applications requiring ultrasensitive ion sensing, based on the optical detection of H + population at the single ion limit. Visualizing dynamic change in the number of protons during electroreduction of protons in attoliter volume zero-mode waveguides.</description><subject>Buffers (chemistry)</subject><subject>Buffing</subject><subject>Calibration</subject><subject>Chemistry</subject><subject>Electrochemical potential</subject><subject>Fluorescein</subject><subject>Fluorescence</subject><subject>Frames per second</subject><subject>Nucleation</subject><subject>Occupancy</subject><subject>Porosity</subject><subject>Protons</subject><subject>Structural analysis</subject><subject>Tracking</subject><subject>Waveguides</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90UlLAzEYBuAgii21F-_CiBdRRrOncxFKXaHgQT2HbNOmzFKTGaH_3ulCRQ_mksD38JKPF4BTBG8QJNmthdFAIhifHYA-hhSlnJHscP_GsAeGMS5gdwhBDItj0CMUYYIy1AfXY-NtqlV0iZm70scmrBLVJM3cJdFXs8Ilvq6Swpe-OQFHuSqiG-7uAfh4fHifPKfT16eXyXiaGkpQkypBqIKaCkgZoXyUM8gYynWutR05iwjvhpYazbPc8EwITZCCzlLLrKKckwG42-YuW106a1zVBFXIZfClCitZKy9_Tyo_l7P6S44Qx3gTcLkLCPVn62Iju8WMKwpVubqNEjMKBco4XtOLP3RRt6Hq1pOYMswQ4wJ16mqrTKhjDC7ffwZBua5B3sO3yaaGpw6fb3GIZu9-apJLm3fm7D9DvgE0ooxS</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Sundaresan, Vignesh</creator><creator>Bohn, Paul W</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9052-0349</orcidid><orcidid>https://orcid.org/0000-0001-9390-1681</orcidid></search><sort><creationdate>20201028</creationdate><title>Acid-base chemistry at the single ion limit</title><author>Sundaresan, Vignesh ; Bohn, Paul W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-a734a0b470453468f50551fbfbbd8ed1360b4d4cb69fc6977b31a0ed4d5da4663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Buffers (chemistry)</topic><topic>Buffing</topic><topic>Calibration</topic><topic>Chemistry</topic><topic>Electrochemical potential</topic><topic>Fluorescein</topic><topic>Fluorescence</topic><topic>Frames per second</topic><topic>Nucleation</topic><topic>Occupancy</topic><topic>Porosity</topic><topic>Protons</topic><topic>Structural analysis</topic><topic>Tracking</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sundaresan, Vignesh</creatorcontrib><creatorcontrib>Bohn, Paul W</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundaresan, Vignesh</au><au>Bohn, Paul W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acid-base chemistry at the single ion limit</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2020-10-28</date><risdate>2020</risdate><volume>11</volume><issue>4</issue><spage>1951</spage><epage>1958</epage><pages>1951-1958</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>We present the results of acid-base experiments performed at the single ion (H + or OH − ) limit in ∼6 aL volume nanopores incorporating electrochemical zero-mode waveguides (E-ZMWs). At pH 3 each E-ZMW nanopore contains ca . 3600H + ions, and application of a negative electrochemical potential to the gold working electrode/optical cladding layer reduces H + to H 2 , thereby depleting H + and increasing the local pH within the nanopore. The change in pH was quantified by tracking the intensity of fluorescein, a pH-responsive fluorophore whose intensity increases with pH. This behavior was translated to the single ion limit by changing the initial pH of the electrolyte solution to pH 6, at which the average pore occupancy 〈 n 〉 pore ∼3.6H + /nanopore. Application of an electrochemical potential sufficiently negative to change the local pH to pH 7 reduces the proton nanopore occupancy to 〈 n 〉 pore ∼0.36H + /nanopore, demonstrating that the approach is sensitive to single H + manipulations, as evidenced by clear potential-dependent changes in fluorescein emission intensity. In addition, at high overpotential, the observed fluorescence intensity exceeded the value predicted from the fluorescence intensity-pH calibration, an observation attributed to the nucleation of H 2 nanobubbles as confirmed both by calculations and the behavior of non-pH responsive Alexa 488 fluorophore. Apart from enhancing fundamental understanding, the approach described here opens the door to applications requiring ultrasensitive ion sensing, based on the optical detection of H + population at the single ion limit. Visualizing dynamic change in the number of protons during electroreduction of protons in attoliter volume zero-mode waveguides.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>34123191</pmid><doi>10.1039/d0sc03756g</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9052-0349</orcidid><orcidid>https://orcid.org/0000-0001-9390-1681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2020-10, Vol.11 (4), p.1951-1958
issn 2041-6520
2041-6539
language eng
recordid cdi_crossref_primary_10_1039_D0SC03756G
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Buffers (chemistry)
Buffing
Calibration
Chemistry
Electrochemical potential
Fluorescein
Fluorescence
Frames per second
Nucleation
Occupancy
Porosity
Protons
Structural analysis
Tracking
Waveguides
title Acid-base chemistry at the single ion limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acid-base%20chemistry%20at%20the%20single%20ion%20limit&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Sundaresan,%20Vignesh&rft.date=2020-10-28&rft.volume=11&rft.issue=4&rft.spage=1951&rft.epage=1958&rft.pages=1951-1958&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d0sc03756g&rft_dat=%3Cproquest_cross%3E2540719626%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452515671&rft_id=info:pmid/34123191&rfr_iscdi=true