The inactivation mechanism of chemical disinfection against SARS-CoV-2: from MD and DFT perspectives
Exploring effective disinfection methods and understanding their mechanisms on the new coronavirus is becoming more active due to the outbreak of novel coronavirus pneumonia (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). By combining molecular dynamics and first-principles...
Gespeichert in:
Veröffentlicht in: | RSC advances 2020-11, Vol.1 (66), p.448-4488 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4488 |
---|---|
container_issue | 66 |
container_start_page | 448 |
container_title | RSC advances |
container_volume | 1 |
creator | Tan, Chunjian Gao, Chenshan Zhou, Quan Van Driel, Willem Ye, Huaiyu Zhang, Guoqi |
description | Exploring effective disinfection methods and understanding their mechanisms on the new coronavirus is becoming more active due to the outbreak of novel coronavirus pneumonia (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). By combining molecular dynamics and first-principles calculations, we investigate the interaction mechanism of chemical agents with 3CL hydrolase of SARS-CoV-2. The radial distribution functions indicate that the biocidal ingredients are sensitive to the unsaturated oxygen atoms of 3CL hydrolase and their interactions remarkably depend on the concentration of the biocidal ingredients. Besides, we find that the adsorption performance of the active ingredients for the unsaturated oxygen atoms is superior to other styles of atoms. These computational results not only decipher the inactivation mechanism of chemical agents against SARS-CoV-2 from the molecule-level perspective, but also provide a theoretical basis for the development and application of new chemical methods with a high disinfection efficiency.
Exploring effective disinfection methods and understanding their mechanisms on the new coronavirus is becoming more active due to the outbreak of novel coronavirus pneumonia (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). |
doi_str_mv | 10.1039/d0ra06730j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0RA06730J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661080956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-829fc1a42ef4c582bc436bc8711a0f4c8ebd51a71291b32407090d62a5e4f71c3</originalsourceid><addsrcrecordid>eNp90s1rFDEUAPBBLLbUXrwrES8iTM33JD0Iy661lYrQrl5DJpN0s8wkYzK74H9v2q1r9WAuCe_9eLzHS1W9QPAUQSLfdzBpyBsC10-qIwwprzHk8umj92F1kvMalsMZwhw9qw4JYxgKKo-qbrmywAdtJr_Vk48BDNasdPB5ANEBs7KDN7oHnc8-OGvuib7VPuQJ3Myub-p5_F7jM-BSHMCXBdChA4vzJRhtyuOd39r8vDpwus_25OE-rr6df1zOL-qrr58u57Or2jAhp1pg6QzSFFtHSwS3hhLeGtEgpGEJCdt2DOkGYYlagilsoIQdx5pZ6hpkyHH1YVd33LSD7YwNU9K9GpMfdPqpovbq70zwK3Ubt0pC1jSYlAJvHwqk-GNj86QGn43tex1s3GSFOUdQQMl4oW_-oeu4SaGMpzBloiGEClHUu50yKeacrNs3g6C6259awOvZ_f4-F_zqcft7-ntbBbzegZTNPvvnA6ixc8W8_J8hvwDH5KoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458733488</pqid></control><display><type>article</type><title>The inactivation mechanism of chemical disinfection against SARS-CoV-2: from MD and DFT perspectives</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tan, Chunjian ; Gao, Chenshan ; Zhou, Quan ; Van Driel, Willem ; Ye, Huaiyu ; Zhang, Guoqi</creator><creatorcontrib>Tan, Chunjian ; Gao, Chenshan ; Zhou, Quan ; Van Driel, Willem ; Ye, Huaiyu ; Zhang, Guoqi</creatorcontrib><description>Exploring effective disinfection methods and understanding their mechanisms on the new coronavirus is becoming more active due to the outbreak of novel coronavirus pneumonia (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). By combining molecular dynamics and first-principles calculations, we investigate the interaction mechanism of chemical agents with 3CL hydrolase of SARS-CoV-2. The radial distribution functions indicate that the biocidal ingredients are sensitive to the unsaturated oxygen atoms of 3CL hydrolase and their interactions remarkably depend on the concentration of the biocidal ingredients. Besides, we find that the adsorption performance of the active ingredients for the unsaturated oxygen atoms is superior to other styles of atoms. These computational results not only decipher the inactivation mechanism of chemical agents against SARS-CoV-2 from the molecule-level perspective, but also provide a theoretical basis for the development and application of new chemical methods with a high disinfection efficiency.
Exploring effective disinfection methods and understanding their mechanisms on the new coronavirus is becoming more active due to the outbreak of novel coronavirus pneumonia (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2).</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra06730j</identifier><identifier>PMID: 35520849</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biocides ; Chemistry ; Coronaviruses ; Deactivation ; Disinfection ; Distribution functions ; First principles ; Ingredients ; Molecular dynamics ; Oxygen atoms ; Radial distribution ; Severe acute respiratory syndrome coronavirus 2 ; Viral diseases</subject><ispartof>RSC advances, 2020-11, Vol.1 (66), p.448-4488</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2020</rights><rights>This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-829fc1a42ef4c582bc436bc8711a0f4c8ebd51a71291b32407090d62a5e4f71c3</citedby><cites>FETCH-LOGICAL-c589t-829fc1a42ef4c582bc436bc8711a0f4c8ebd51a71291b32407090d62a5e4f71c3</cites><orcidid>0000-0001-8882-2508 ; 0000-0001-9928-1305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057723/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057723/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35520849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Chunjian</creatorcontrib><creatorcontrib>Gao, Chenshan</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Van Driel, Willem</creatorcontrib><creatorcontrib>Ye, Huaiyu</creatorcontrib><creatorcontrib>Zhang, Guoqi</creatorcontrib><title>The inactivation mechanism of chemical disinfection against SARS-CoV-2: from MD and DFT perspectives</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Exploring effective disinfection methods and understanding their mechanisms on the new coronavirus is becoming more active due to the outbreak of novel coronavirus pneumonia (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). By combining molecular dynamics and first-principles calculations, we investigate the interaction mechanism of chemical agents with 3CL hydrolase of SARS-CoV-2. The radial distribution functions indicate that the biocidal ingredients are sensitive to the unsaturated oxygen atoms of 3CL hydrolase and their interactions remarkably depend on the concentration of the biocidal ingredients. Besides, we find that the adsorption performance of the active ingredients for the unsaturated oxygen atoms is superior to other styles of atoms. These computational results not only decipher the inactivation mechanism of chemical agents against SARS-CoV-2 from the molecule-level perspective, but also provide a theoretical basis for the development and application of new chemical methods with a high disinfection efficiency.
Exploring effective disinfection methods and understanding their mechanisms on the new coronavirus is becoming more active due to the outbreak of novel coronavirus pneumonia (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2).</description><subject>Biocides</subject><subject>Chemistry</subject><subject>Coronaviruses</subject><subject>Deactivation</subject><subject>Disinfection</subject><subject>Distribution functions</subject><subject>First principles</subject><subject>Ingredients</subject><subject>Molecular dynamics</subject><subject>Oxygen atoms</subject><subject>Radial distribution</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viral diseases</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90s1rFDEUAPBBLLbUXrwrES8iTM33JD0Iy661lYrQrl5DJpN0s8wkYzK74H9v2q1r9WAuCe_9eLzHS1W9QPAUQSLfdzBpyBsC10-qIwwprzHk8umj92F1kvMalsMZwhw9qw4JYxgKKo-qbrmywAdtJr_Vk48BDNasdPB5ANEBs7KDN7oHnc8-OGvuib7VPuQJ3Myub-p5_F7jM-BSHMCXBdChA4vzJRhtyuOd39r8vDpwus_25OE-rr6df1zOL-qrr58u57Or2jAhp1pg6QzSFFtHSwS3hhLeGtEgpGEJCdt2DOkGYYlagilsoIQdx5pZ6hpkyHH1YVd33LSD7YwNU9K9GpMfdPqpovbq70zwK3Ubt0pC1jSYlAJvHwqk-GNj86QGn43tex1s3GSFOUdQQMl4oW_-oeu4SaGMpzBloiGEClHUu50yKeacrNs3g6C6259awOvZ_f4-F_zqcft7-ntbBbzegZTNPvvnA6ixc8W8_J8hvwDH5KoQ</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Tan, Chunjian</creator><creator>Gao, Chenshan</creator><creator>Zhou, Quan</creator><creator>Van Driel, Willem</creator><creator>Ye, Huaiyu</creator><creator>Zhang, Guoqi</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8882-2508</orcidid><orcidid>https://orcid.org/0000-0001-9928-1305</orcidid></search><sort><creationdate>20201106</creationdate><title>The inactivation mechanism of chemical disinfection against SARS-CoV-2: from MD and DFT perspectives</title><author>Tan, Chunjian ; Gao, Chenshan ; Zhou, Quan ; Van Driel, Willem ; Ye, Huaiyu ; Zhang, Guoqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-829fc1a42ef4c582bc436bc8711a0f4c8ebd51a71291b32407090d62a5e4f71c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocides</topic><topic>Chemistry</topic><topic>Coronaviruses</topic><topic>Deactivation</topic><topic>Disinfection</topic><topic>Distribution functions</topic><topic>First principles</topic><topic>Ingredients</topic><topic>Molecular dynamics</topic><topic>Oxygen atoms</topic><topic>Radial distribution</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Chunjian</creatorcontrib><creatorcontrib>Gao, Chenshan</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Van Driel, Willem</creatorcontrib><creatorcontrib>Ye, Huaiyu</creatorcontrib><creatorcontrib>Zhang, Guoqi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Chunjian</au><au>Gao, Chenshan</au><au>Zhou, Quan</au><au>Van Driel, Willem</au><au>Ye, Huaiyu</au><au>Zhang, Guoqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The inactivation mechanism of chemical disinfection against SARS-CoV-2: from MD and DFT perspectives</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-11-06</date><risdate>2020</risdate><volume>1</volume><issue>66</issue><spage>448</spage><epage>4488</epage><pages>448-4488</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Exploring effective disinfection methods and understanding their mechanisms on the new coronavirus is becoming more active due to the outbreak of novel coronavirus pneumonia (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). By combining molecular dynamics and first-principles calculations, we investigate the interaction mechanism of chemical agents with 3CL hydrolase of SARS-CoV-2. The radial distribution functions indicate that the biocidal ingredients are sensitive to the unsaturated oxygen atoms of 3CL hydrolase and their interactions remarkably depend on the concentration of the biocidal ingredients. Besides, we find that the adsorption performance of the active ingredients for the unsaturated oxygen atoms is superior to other styles of atoms. These computational results not only decipher the inactivation mechanism of chemical agents against SARS-CoV-2 from the molecule-level perspective, but also provide a theoretical basis for the development and application of new chemical methods with a high disinfection efficiency.
Exploring effective disinfection methods and understanding their mechanisms on the new coronavirus is becoming more active due to the outbreak of novel coronavirus pneumonia (COVID-19) caused by severe acute respiratory coronavirus 2 (SARS-CoV-2).</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35520849</pmid><doi>10.1039/d0ra06730j</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8882-2508</orcidid><orcidid>https://orcid.org/0000-0001-9928-1305</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2020-11, Vol.1 (66), p.448-4488 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0RA06730J |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Biocides Chemistry Coronaviruses Deactivation Disinfection Distribution functions First principles Ingredients Molecular dynamics Oxygen atoms Radial distribution Severe acute respiratory syndrome coronavirus 2 Viral diseases |
title | The inactivation mechanism of chemical disinfection against SARS-CoV-2: from MD and DFT perspectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20inactivation%20mechanism%20of%20chemical%20disinfection%20against%20SARS-CoV-2:%20from%20MD%20and%20DFT%20perspectives&rft.jtitle=RSC%20advances&rft.au=Tan,%20Chunjian&rft.date=2020-11-06&rft.volume=1&rft.issue=66&rft.spage=448&rft.epage=4488&rft.pages=448-4488&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra06730j&rft_dat=%3Cproquest_cross%3E2661080956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458733488&rft_id=info:pmid/35520849&rfr_iscdi=true |