SnO-Sn 3 O 4 heterostructural gas sensor with high response and selectivity to parts-per-billion-level NO 2 at low operating temperature

Considering the harmfulness of nitrogen dioxide (NO ), it is important to develop NO sensors with high responses and low limits of detection. In this study, we synthesize a novel SnO-Sn O heterostructure through a one-step solvothermal method, which is used for the first time as an NO sensor. The ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2020-08, Vol.10 (50), p.29843-29854
Hauptverfasser: Zeng, Wenwen, Liu, Yingzhi, Chen, Guoliang, Zhan, Haoran, Mei, Jun, Luo, Nan, He, Zhoukun, Tang, Changyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29854
container_issue 50
container_start_page 29843
container_title RSC advances
container_volume 10
creator Zeng, Wenwen
Liu, Yingzhi
Chen, Guoliang
Zhan, Haoran
Mei, Jun
Luo, Nan
He, Zhoukun
Tang, Changyu
description Considering the harmfulness of nitrogen dioxide (NO ), it is important to develop NO sensors with high responses and low limits of detection. In this study, we synthesize a novel SnO-Sn O heterostructure through a one-step solvothermal method, which is used for the first time as an NO sensor. The material exhibits three-dimensional flower-like microparticles assembled by two-dimensional nanosheets, -formed SnO-Sn O heterostructures, and large specific surface area. Gas sensing measurements show that the responses of the SnO-Sn O heterostructure to 500 ppb NO are as high as 657.4 and 63.4 while its limits of detection are as low as 2.5 and 10 parts per billion at 75 °C and ambient temperature, respectively. In addition, the SnO-Sn O heterostructure has an excellent selectivity to NO , even if exposed to mixture gases containing interferential part with high concentration. The superior sensing properties can be attributed to the formation of SnO-Sn O p-n heterojunctions and large specific surface area. Therefore, the SnO-Sn O heterostructure having excellent NO sensing performances is very promising for applications as an NO sensor or alarm operated at a low operating temperature.
doi_str_mv 10.1039/d0ra05576j
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0RA05576J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35518242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c992-4d37443836a5d9f57c25d35eefd6fdb5cc1690002449a4ccf887063f093ba09e3</originalsourceid><addsrcrecordid>eNpNkM1qwkAUhYfSUsW66QOUuy6kncyfzlLsP9JAdR8mkxuNxCTMjIpv0Mduqm3p3ZwD5-PCOYRcx_Quplzf59QZKuVIrc9In1GhIkaVPv_ne2To_Zp2p2TMVHxJelzKeMwE65PPeZ1E8xo4JCBghQFd44Pb2rB1poKl8eCx9o2DfRlWsCqXK3Do26b2CKbOu7RCG8pdGQ4QGmiNCz5q0UVZWVVlU0cV7rCC9wQYmABVs4emi00o6yUE3Bz91uEVuShM5XH4owOyeHpcTF-iWfL8Op3MIqs1i0TOR0LwMVdG5rqQI8tkziVikasiz6S1sdJdUyaENsLaYjweUcULqnlmqEY-ILent7br6R0WaevKjXGHNKbp96DpA_2YHAd96-CbE9xusw3mf-jvfPwLkidx2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SnO-Sn 3 O 4 heterostructural gas sensor with high response and selectivity to parts-per-billion-level NO 2 at low operating temperature</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Zeng, Wenwen ; Liu, Yingzhi ; Chen, Guoliang ; Zhan, Haoran ; Mei, Jun ; Luo, Nan ; He, Zhoukun ; Tang, Changyu</creator><creatorcontrib>Zeng, Wenwen ; Liu, Yingzhi ; Chen, Guoliang ; Zhan, Haoran ; Mei, Jun ; Luo, Nan ; He, Zhoukun ; Tang, Changyu</creatorcontrib><description>Considering the harmfulness of nitrogen dioxide (NO ), it is important to develop NO sensors with high responses and low limits of detection. In this study, we synthesize a novel SnO-Sn O heterostructure through a one-step solvothermal method, which is used for the first time as an NO sensor. The material exhibits three-dimensional flower-like microparticles assembled by two-dimensional nanosheets, -formed SnO-Sn O heterostructures, and large specific surface area. Gas sensing measurements show that the responses of the SnO-Sn O heterostructure to 500 ppb NO are as high as 657.4 and 63.4 while its limits of detection are as low as 2.5 and 10 parts per billion at 75 °C and ambient temperature, respectively. In addition, the SnO-Sn O heterostructure has an excellent selectivity to NO , even if exposed to mixture gases containing interferential part with high concentration. The superior sensing properties can be attributed to the formation of SnO-Sn O p-n heterojunctions and large specific surface area. Therefore, the SnO-Sn O heterostructure having excellent NO sensing performances is very promising for applications as an NO sensor or alarm operated at a low operating temperature.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d0ra05576j</identifier><identifier>PMID: 35518242</identifier><language>eng</language><publisher>England</publisher><ispartof>RSC advances, 2020-08, Vol.10 (50), p.29843-29854</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c992-4d37443836a5d9f57c25d35eefd6fdb5cc1690002449a4ccf887063f093ba09e3</citedby><cites>FETCH-LOGICAL-c992-4d37443836a5d9f57c25d35eefd6fdb5cc1690002449a4ccf887063f093ba09e3</cites><orcidid>0000-0002-9826-3006 ; 0000-0002-1133-567X ; 0000-0002-2874-8745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35518242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Wenwen</creatorcontrib><creatorcontrib>Liu, Yingzhi</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><creatorcontrib>Zhan, Haoran</creatorcontrib><creatorcontrib>Mei, Jun</creatorcontrib><creatorcontrib>Luo, Nan</creatorcontrib><creatorcontrib>He, Zhoukun</creatorcontrib><creatorcontrib>Tang, Changyu</creatorcontrib><title>SnO-Sn 3 O 4 heterostructural gas sensor with high response and selectivity to parts-per-billion-level NO 2 at low operating temperature</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Considering the harmfulness of nitrogen dioxide (NO ), it is important to develop NO sensors with high responses and low limits of detection. In this study, we synthesize a novel SnO-Sn O heterostructure through a one-step solvothermal method, which is used for the first time as an NO sensor. The material exhibits three-dimensional flower-like microparticles assembled by two-dimensional nanosheets, -formed SnO-Sn O heterostructures, and large specific surface area. Gas sensing measurements show that the responses of the SnO-Sn O heterostructure to 500 ppb NO are as high as 657.4 and 63.4 while its limits of detection are as low as 2.5 and 10 parts per billion at 75 °C and ambient temperature, respectively. In addition, the SnO-Sn O heterostructure has an excellent selectivity to NO , even if exposed to mixture gases containing interferential part with high concentration. The superior sensing properties can be attributed to the formation of SnO-Sn O p-n heterojunctions and large specific surface area. Therefore, the SnO-Sn O heterostructure having excellent NO sensing performances is very promising for applications as an NO sensor or alarm operated at a low operating temperature.</description><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkM1qwkAUhYfSUsW66QOUuy6kncyfzlLsP9JAdR8mkxuNxCTMjIpv0Mduqm3p3ZwD5-PCOYRcx_Quplzf59QZKuVIrc9In1GhIkaVPv_ne2To_Zp2p2TMVHxJelzKeMwE65PPeZ1E8xo4JCBghQFd44Pb2rB1poKl8eCx9o2DfRlWsCqXK3Do26b2CKbOu7RCG8pdGQ4QGmiNCz5q0UVZWVVlU0cV7rCC9wQYmABVs4emi00o6yUE3Bz91uEVuShM5XH4owOyeHpcTF-iWfL8Op3MIqs1i0TOR0LwMVdG5rqQI8tkziVikasiz6S1sdJdUyaENsLaYjweUcULqnlmqEY-ILent7br6R0WaevKjXGHNKbp96DpA_2YHAd96-CbE9xusw3mf-jvfPwLkidx2g</recordid><startdate>20200812</startdate><enddate>20200812</enddate><creator>Zeng, Wenwen</creator><creator>Liu, Yingzhi</creator><creator>Chen, Guoliang</creator><creator>Zhan, Haoran</creator><creator>Mei, Jun</creator><creator>Luo, Nan</creator><creator>He, Zhoukun</creator><creator>Tang, Changyu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9826-3006</orcidid><orcidid>https://orcid.org/0000-0002-1133-567X</orcidid><orcidid>https://orcid.org/0000-0002-2874-8745</orcidid></search><sort><creationdate>20200812</creationdate><title>SnO-Sn 3 O 4 heterostructural gas sensor with high response and selectivity to parts-per-billion-level NO 2 at low operating temperature</title><author>Zeng, Wenwen ; Liu, Yingzhi ; Chen, Guoliang ; Zhan, Haoran ; Mei, Jun ; Luo, Nan ; He, Zhoukun ; Tang, Changyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c992-4d37443836a5d9f57c25d35eefd6fdb5cc1690002449a4ccf887063f093ba09e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Wenwen</creatorcontrib><creatorcontrib>Liu, Yingzhi</creatorcontrib><creatorcontrib>Chen, Guoliang</creatorcontrib><creatorcontrib>Zhan, Haoran</creatorcontrib><creatorcontrib>Mei, Jun</creatorcontrib><creatorcontrib>Luo, Nan</creatorcontrib><creatorcontrib>He, Zhoukun</creatorcontrib><creatorcontrib>Tang, Changyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Wenwen</au><au>Liu, Yingzhi</au><au>Chen, Guoliang</au><au>Zhan, Haoran</au><au>Mei, Jun</au><au>Luo, Nan</au><au>He, Zhoukun</au><au>Tang, Changyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SnO-Sn 3 O 4 heterostructural gas sensor with high response and selectivity to parts-per-billion-level NO 2 at low operating temperature</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2020-08-12</date><risdate>2020</risdate><volume>10</volume><issue>50</issue><spage>29843</spage><epage>29854</epage><pages>29843-29854</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Considering the harmfulness of nitrogen dioxide (NO ), it is important to develop NO sensors with high responses and low limits of detection. In this study, we synthesize a novel SnO-Sn O heterostructure through a one-step solvothermal method, which is used for the first time as an NO sensor. The material exhibits three-dimensional flower-like microparticles assembled by two-dimensional nanosheets, -formed SnO-Sn O heterostructures, and large specific surface area. Gas sensing measurements show that the responses of the SnO-Sn O heterostructure to 500 ppb NO are as high as 657.4 and 63.4 while its limits of detection are as low as 2.5 and 10 parts per billion at 75 °C and ambient temperature, respectively. In addition, the SnO-Sn O heterostructure has an excellent selectivity to NO , even if exposed to mixture gases containing interferential part with high concentration. The superior sensing properties can be attributed to the formation of SnO-Sn O p-n heterojunctions and large specific surface area. Therefore, the SnO-Sn O heterostructure having excellent NO sensing performances is very promising for applications as an NO sensor or alarm operated at a low operating temperature.</abstract><cop>England</cop><pmid>35518242</pmid><doi>10.1039/d0ra05576j</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9826-3006</orcidid><orcidid>https://orcid.org/0000-0002-1133-567X</orcidid><orcidid>https://orcid.org/0000-0002-2874-8745</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2020-08, Vol.10 (50), p.29843-29854
issn 2046-2069
2046-2069
language eng
recordid cdi_crossref_primary_10_1039_D0RA05576J
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
title SnO-Sn 3 O 4 heterostructural gas sensor with high response and selectivity to parts-per-billion-level NO 2 at low operating temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SnO-Sn%203%20O%204%20heterostructural%20gas%20sensor%20with%20high%20response%20and%20selectivity%20to%20parts-per-billion-level%20NO%202%20at%20low%20operating%20temperature&rft.jtitle=RSC%20advances&rft.au=Zeng,%20Wenwen&rft.date=2020-08-12&rft.volume=10&rft.issue=50&rft.spage=29843&rft.epage=29854&rft.pages=29843-29854&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d0ra05576j&rft_dat=%3Cpubmed_cross%3E35518242%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35518242&rfr_iscdi=true