Controllable design of defect-rich hybrid iron oxide nanostructures on mesoporous carbon-based scaffold for pseudocapacitive applications

The controllable design of functional nanostructures for energy and environmental applications represents a critical yet challenging technology. The existing fabrication strategies focus mainly on increasing the number of accessible active sites. However, these techniques generally necessitate compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-02, Vol.13 (6), p.3662-3672
Hauptverfasser: Mofarah, Sajjad, Khayyam Nekouei, Rasoul, Maroufi, Samane, Biswal, Smitirupa, Lim, Sean, Yao, Yin, Sahajwalla, Veena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3672
container_issue 6
container_start_page 3662
container_title Nanoscale
container_volume 13
creator Mofarah, Sajjad
Khayyam Nekouei, Rasoul
Maroufi, Samane
Biswal, Smitirupa
Lim, Sean
Yao, Yin
Sahajwalla, Veena
description The controllable design of functional nanostructures for energy and environmental applications represents a critical yet challenging technology. The existing fabrication strategies focus mainly on increasing the number of accessible active sites. However, these techniques generally necessitate complex chemical agents and suffer from limited experimental conditions delivering high costs, low yields, and poor reproducibility. The present work reports a new strategy for controllable synthesis of a hybrid system including mixed iron oxide nanostructures enriched with non-stoichiometric Fe 21.34 O 32 and Fe 3+ [Fe 5/3 3+ 1/3 2+ ]O 4 phases, which possess a high concentration of oxygen and Fe 2+ vacancies, and a mesoporous carbon-based scaffold (MCS), which was dervied from coffee residues, with graphitic surface and perforated architecture. The nanoperforates acted as trapping sites to localise the Fe x O y nanoparticles, thereby boosting the density of accessible active sites. Additionally, at the interfacial regions between the Fe x O y crystallites, a high density of oxygen vacancies with an oriented pattern was shown to create superlattice structures. The energy storage functionality of the defect-rich MCS/Fe x O y nanostructure with nanoperforated architecture was investigated, where the results exhibited a high gravimetric capacitance of 540 F g −1 at a current density of 1 A g −1 with outstanding capacitance retention of 73.6% after 14 000 cycles. This work reports fabrication of defect-rich iron oxides and carbon-based scaffolds, with perforated architecture. The nanoperforates act as trapping sites to localise the Fe x O y and enhance accessibility of the active sites, improving the electrochemical performance.
doi_str_mv 10.1039/d0nr06880b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0NR06880B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490477175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-4db70f054ba1779aa1658ab4191c3ea06c5c70b16ddba3fc5fa3ee0c477dd7673</originalsourceid><addsrcrecordid>eNpFkUtL5UAQhRsZ8TWzca80uBPiVN9Oum-W4_UJojDMrEP1S1ty07E6Ef0J86_NePW6qkOdj1NwirF9AScCZP3TQUeg5nMwG2xnBiUUUurZt7VW5TbbzfkRQNVSyS22LWUl51qKHfZvkbqBUtuiaT13Psf7jqcwqeDtUFC0D_zh1VB0PFKarJfoPO-wS3mg0Q4j-cyn_dLn1CdKY-YWyaSuMJi949liCKl1PCTiffajSxZ7tHGIz55j37fR4hBTl7-zzYBt9j8-5h77e3H-Z3FV3NxdXi9-3RRWajUUpTMaAlSlQaF1jShUNUdTilpY6RGUrawGI5RzBmWwVUDpPdhSa-e00nKPHa1ye0pPo89D85hG6qaTzaysYeKEribqeEVZSjmTD01PcYn02gho_rfenMHt7_fWTyf48CNyNEvv1uhnzRNwsAIo27X79Tb5BtIsivo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490477175</pqid></control><display><type>article</type><title>Controllable design of defect-rich hybrid iron oxide nanostructures on mesoporous carbon-based scaffold for pseudocapacitive applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Mofarah, Sajjad ; Khayyam Nekouei, Rasoul ; Maroufi, Samane ; Biswal, Smitirupa ; Lim, Sean ; Yao, Yin ; Sahajwalla, Veena</creator><creatorcontrib>Mofarah, Sajjad ; Khayyam Nekouei, Rasoul ; Maroufi, Samane ; Biswal, Smitirupa ; Lim, Sean ; Yao, Yin ; Sahajwalla, Veena</creatorcontrib><description>The controllable design of functional nanostructures for energy and environmental applications represents a critical yet challenging technology. The existing fabrication strategies focus mainly on increasing the number of accessible active sites. However, these techniques generally necessitate complex chemical agents and suffer from limited experimental conditions delivering high costs, low yields, and poor reproducibility. The present work reports a new strategy for controllable synthesis of a hybrid system including mixed iron oxide nanostructures enriched with non-stoichiometric Fe 21.34 O 32 and Fe 3+ [Fe 5/3 3+ 1/3 2+ ]O 4 phases, which possess a high concentration of oxygen and Fe 2+ vacancies, and a mesoporous carbon-based scaffold (MCS), which was dervied from coffee residues, with graphitic surface and perforated architecture. The nanoperforates acted as trapping sites to localise the Fe x O y nanoparticles, thereby boosting the density of accessible active sites. Additionally, at the interfacial regions between the Fe x O y crystallites, a high density of oxygen vacancies with an oriented pattern was shown to create superlattice structures. The energy storage functionality of the defect-rich MCS/Fe x O y nanostructure with nanoperforated architecture was investigated, where the results exhibited a high gravimetric capacitance of 540 F g −1 at a current density of 1 A g −1 with outstanding capacitance retention of 73.6% after 14 000 cycles. This work reports fabrication of defect-rich iron oxides and carbon-based scaffolds, with perforated architecture. The nanoperforates act as trapping sites to localise the Fe x O y and enhance accessibility of the active sites, improving the electrochemical performance.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d0nr06880b</identifier><identifier>PMID: 33538731</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Accessibility ; Capacitance ; Carbon ; Crystallites ; Design defects ; Energy storage ; Gravimetry ; Hybrid systems ; Iron oxides ; Lattice vacancies ; Nanoparticles ; Nanostructure ; Scaffolds ; Superlattices ; Vacancies</subject><ispartof>Nanoscale, 2021-02, Vol.13 (6), p.3662-3672</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-4db70f054ba1779aa1658ab4191c3ea06c5c70b16ddba3fc5fa3ee0c477dd7673</citedby><cites>FETCH-LOGICAL-c376t-4db70f054ba1779aa1658ab4191c3ea06c5c70b16ddba3fc5fa3ee0c477dd7673</cites><orcidid>0000-0002-2800-2652 ; 0000-0002-4835-767X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33538731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mofarah, Sajjad</creatorcontrib><creatorcontrib>Khayyam Nekouei, Rasoul</creatorcontrib><creatorcontrib>Maroufi, Samane</creatorcontrib><creatorcontrib>Biswal, Smitirupa</creatorcontrib><creatorcontrib>Lim, Sean</creatorcontrib><creatorcontrib>Yao, Yin</creatorcontrib><creatorcontrib>Sahajwalla, Veena</creatorcontrib><title>Controllable design of defect-rich hybrid iron oxide nanostructures on mesoporous carbon-based scaffold for pseudocapacitive applications</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The controllable design of functional nanostructures for energy and environmental applications represents a critical yet challenging technology. The existing fabrication strategies focus mainly on increasing the number of accessible active sites. However, these techniques generally necessitate complex chemical agents and suffer from limited experimental conditions delivering high costs, low yields, and poor reproducibility. The present work reports a new strategy for controllable synthesis of a hybrid system including mixed iron oxide nanostructures enriched with non-stoichiometric Fe 21.34 O 32 and Fe 3+ [Fe 5/3 3+ 1/3 2+ ]O 4 phases, which possess a high concentration of oxygen and Fe 2+ vacancies, and a mesoporous carbon-based scaffold (MCS), which was dervied from coffee residues, with graphitic surface and perforated architecture. The nanoperforates acted as trapping sites to localise the Fe x O y nanoparticles, thereby boosting the density of accessible active sites. Additionally, at the interfacial regions between the Fe x O y crystallites, a high density of oxygen vacancies with an oriented pattern was shown to create superlattice structures. The energy storage functionality of the defect-rich MCS/Fe x O y nanostructure with nanoperforated architecture was investigated, where the results exhibited a high gravimetric capacitance of 540 F g −1 at a current density of 1 A g −1 with outstanding capacitance retention of 73.6% after 14 000 cycles. This work reports fabrication of defect-rich iron oxides and carbon-based scaffolds, with perforated architecture. The nanoperforates act as trapping sites to localise the Fe x O y and enhance accessibility of the active sites, improving the electrochemical performance.</description><subject>Accessibility</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Crystallites</subject><subject>Design defects</subject><subject>Energy storage</subject><subject>Gravimetry</subject><subject>Hybrid systems</subject><subject>Iron oxides</subject><subject>Lattice vacancies</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Scaffolds</subject><subject>Superlattices</subject><subject>Vacancies</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkUtL5UAQhRsZ8TWzca80uBPiVN9Oum-W4_UJojDMrEP1S1ty07E6Ef0J86_NePW6qkOdj1NwirF9AScCZP3TQUeg5nMwG2xnBiUUUurZt7VW5TbbzfkRQNVSyS22LWUl51qKHfZvkbqBUtuiaT13Psf7jqcwqeDtUFC0D_zh1VB0PFKarJfoPO-wS3mg0Q4j-cyn_dLn1CdKY-YWyaSuMJi949liCKl1PCTiffajSxZ7tHGIz55j37fR4hBTl7-zzYBt9j8-5h77e3H-Z3FV3NxdXi9-3RRWajUUpTMaAlSlQaF1jShUNUdTilpY6RGUrawGI5RzBmWwVUDpPdhSa-e00nKPHa1ye0pPo89D85hG6qaTzaysYeKEribqeEVZSjmTD01PcYn02gho_rfenMHt7_fWTyf48CNyNEvv1uhnzRNwsAIo27X79Tb5BtIsivo</recordid><startdate>20210218</startdate><enddate>20210218</enddate><creator>Mofarah, Sajjad</creator><creator>Khayyam Nekouei, Rasoul</creator><creator>Maroufi, Samane</creator><creator>Biswal, Smitirupa</creator><creator>Lim, Sean</creator><creator>Yao, Yin</creator><creator>Sahajwalla, Veena</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2800-2652</orcidid><orcidid>https://orcid.org/0000-0002-4835-767X</orcidid></search><sort><creationdate>20210218</creationdate><title>Controllable design of defect-rich hybrid iron oxide nanostructures on mesoporous carbon-based scaffold for pseudocapacitive applications</title><author>Mofarah, Sajjad ; Khayyam Nekouei, Rasoul ; Maroufi, Samane ; Biswal, Smitirupa ; Lim, Sean ; Yao, Yin ; Sahajwalla, Veena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-4db70f054ba1779aa1658ab4191c3ea06c5c70b16ddba3fc5fa3ee0c477dd7673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accessibility</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Crystallites</topic><topic>Design defects</topic><topic>Energy storage</topic><topic>Gravimetry</topic><topic>Hybrid systems</topic><topic>Iron oxides</topic><topic>Lattice vacancies</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Scaffolds</topic><topic>Superlattices</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mofarah, Sajjad</creatorcontrib><creatorcontrib>Khayyam Nekouei, Rasoul</creatorcontrib><creatorcontrib>Maroufi, Samane</creatorcontrib><creatorcontrib>Biswal, Smitirupa</creatorcontrib><creatorcontrib>Lim, Sean</creatorcontrib><creatorcontrib>Yao, Yin</creatorcontrib><creatorcontrib>Sahajwalla, Veena</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mofarah, Sajjad</au><au>Khayyam Nekouei, Rasoul</au><au>Maroufi, Samane</au><au>Biswal, Smitirupa</au><au>Lim, Sean</au><au>Yao, Yin</au><au>Sahajwalla, Veena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable design of defect-rich hybrid iron oxide nanostructures on mesoporous carbon-based scaffold for pseudocapacitive applications</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2021-02-18</date><risdate>2021</risdate><volume>13</volume><issue>6</issue><spage>3662</spage><epage>3672</epage><pages>3662-3672</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The controllable design of functional nanostructures for energy and environmental applications represents a critical yet challenging technology. The existing fabrication strategies focus mainly on increasing the number of accessible active sites. However, these techniques generally necessitate complex chemical agents and suffer from limited experimental conditions delivering high costs, low yields, and poor reproducibility. The present work reports a new strategy for controllable synthesis of a hybrid system including mixed iron oxide nanostructures enriched with non-stoichiometric Fe 21.34 O 32 and Fe 3+ [Fe 5/3 3+ 1/3 2+ ]O 4 phases, which possess a high concentration of oxygen and Fe 2+ vacancies, and a mesoporous carbon-based scaffold (MCS), which was dervied from coffee residues, with graphitic surface and perforated architecture. The nanoperforates acted as trapping sites to localise the Fe x O y nanoparticles, thereby boosting the density of accessible active sites. Additionally, at the interfacial regions between the Fe x O y crystallites, a high density of oxygen vacancies with an oriented pattern was shown to create superlattice structures. The energy storage functionality of the defect-rich MCS/Fe x O y nanostructure with nanoperforated architecture was investigated, where the results exhibited a high gravimetric capacitance of 540 F g −1 at a current density of 1 A g −1 with outstanding capacitance retention of 73.6% after 14 000 cycles. This work reports fabrication of defect-rich iron oxides and carbon-based scaffolds, with perforated architecture. The nanoperforates act as trapping sites to localise the Fe x O y and enhance accessibility of the active sites, improving the electrochemical performance.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33538731</pmid><doi>10.1039/d0nr06880b</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2800-2652</orcidid><orcidid>https://orcid.org/0000-0002-4835-767X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2021-02, Vol.13 (6), p.3662-3672
issn 2040-3364
2040-3372
language eng
recordid cdi_crossref_primary_10_1039_D0NR06880B
source Royal Society Of Chemistry Journals 2008-
subjects Accessibility
Capacitance
Carbon
Crystallites
Design defects
Energy storage
Gravimetry
Hybrid systems
Iron oxides
Lattice vacancies
Nanoparticles
Nanostructure
Scaffolds
Superlattices
Vacancies
title Controllable design of defect-rich hybrid iron oxide nanostructures on mesoporous carbon-based scaffold for pseudocapacitive applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20design%20of%20defect-rich%20hybrid%20iron%20oxide%20nanostructures%20on%20mesoporous%20carbon-based%20scaffold%20for%20pseudocapacitive%20applications&rft.jtitle=Nanoscale&rft.au=Mofarah,%20Sajjad&rft.date=2021-02-18&rft.volume=13&rft.issue=6&rft.spage=3662&rft.epage=3672&rft.pages=3662-3672&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d0nr06880b&rft_dat=%3Cproquest_cross%3E2490477175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490477175&rft_id=info:pmid/33538731&rfr_iscdi=true