Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite
Covering: 2015 to 2020 The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven suc...
Gespeichert in:
Veröffentlicht in: | Natural product reports 2020-11, Vol.37 (11), p.1532-1548 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1548 |
---|---|
container_issue | 11 |
container_start_page | 1532 |
container_title | Natural product reports |
container_volume | 37 |
creator | Williams, Peyton C Wernke, Kevin M Tirla, Alina Herzon, Seth B |
description | Covering: 2015 to 2020
The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut.
This review recounts the chemical journey from 2015 to 2020 that culminated in the structure elucidation of the elusive bacterial metabolite, colibactin. |
doi_str_mv | 10.1039/d0np00072h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0NP00072H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459628619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-490c53d5996988c6d8b7f63593e050488932cd496ab27cec70d88e7facf70b763</originalsourceid><addsrcrecordid>eNpdkktv1DAUhS0EotPChj3IajcIEbiO49cGCZVCkSpgAevIsZ2Oh8Se2g7S_HtcpgyPlX11Ph2d62OEnhB4RYCq1xbCFgBEu76HVqTj0HSCtffRClrOGmBcHqHjnDcAhAjOH6IjSonoGGcrtLmYt1Pc-XCNzdrN3ugJ510oa5d9xiXiXBa7w3Wut7SYsiSHdbB4XIIpPgYcR2zi5Addx_ASa3xqdfqOZ12KS6d4dkUPVS_uEXow6im7x3fnCfr2_uLr-WVz9fnDx_O3V43puCpNp8AwaplSXElpuJWDGDllijpg0EmpaGtsp7geWmGcEWCldGLUZhQwCE5P0Ju973YZZmeNCyXpqd8mP-u066P2_b9K8Ov-Ov7ohaiPSGQ1eH5nkOLN4nLpZ5-NmyYdXFxy33ZM8VZyoip69h-6iUsKdb1KccJkjX2b6MWeMinmnNx4CEOgv62wfwefvvyq8LLCz_6Of0B_d1aBp3sgZXNQ__wB-hMRnqHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461585936</pqid></control><display><type>article</type><title>Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Williams, Peyton C ; Wernke, Kevin M ; Tirla, Alina ; Herzon, Seth B</creator><creatorcontrib>Williams, Peyton C ; Wernke, Kevin M ; Tirla, Alina ; Herzon, Seth B</creatorcontrib><description>Covering: 2015 to 2020
The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut.
This review recounts the chemical journey from 2015 to 2020 that culminated in the structure elucidation of the elusive bacterial metabolite, colibactin.</description><identifier>ISSN: 0265-0568</identifier><identifier>EISSN: 1460-4752</identifier><identifier>DOI: 10.1039/d0np00072h</identifier><identifier>PMID: 33174565</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biological Products - chemistry ; Biological Products - pharmacology ; Chemical synthesis ; Dark matter ; Escherichia coli Proteins - genetics ; Fermentation ; Gene clusters ; Humans ; Metabolites ; Molecular Structure ; Mutation ; Natural products ; Peptide Hydrolases - genetics ; Peptides - chemical synthesis ; Peptides - chemistry ; Peptides - genetics ; Peptides - pharmacology ; Polyketides - chemical synthesis ; Polyketides - chemistry ; Polyketides - pharmacology ; Pyridones - chemistry ; Secondary metabolites ; Structure-Activity Relationship ; Structure-function relationships</subject><ispartof>Natural product reports, 2020-11, Vol.37 (11), p.1532-1548</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-490c53d5996988c6d8b7f63593e050488932cd496ab27cec70d88e7facf70b763</citedby><cites>FETCH-LOGICAL-c469t-490c53d5996988c6d8b7f63593e050488932cd496ab27cec70d88e7facf70b763</cites><orcidid>0000-0001-8392-0061 ; 0000-0002-7640-2837 ; 0000-0001-5940-9853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33174565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Peyton C</creatorcontrib><creatorcontrib>Wernke, Kevin M</creatorcontrib><creatorcontrib>Tirla, Alina</creatorcontrib><creatorcontrib>Herzon, Seth B</creatorcontrib><title>Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite</title><title>Natural product reports</title><addtitle>Nat Prod Rep</addtitle><description>Covering: 2015 to 2020
The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut.
This review recounts the chemical journey from 2015 to 2020 that culminated in the structure elucidation of the elusive bacterial metabolite, colibactin.</description><subject>Biological Products - chemistry</subject><subject>Biological Products - pharmacology</subject><subject>Chemical synthesis</subject><subject>Dark matter</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Fermentation</subject><subject>Gene clusters</subject><subject>Humans</subject><subject>Metabolites</subject><subject>Molecular Structure</subject><subject>Mutation</subject><subject>Natural products</subject><subject>Peptide Hydrolases - genetics</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Peptides - pharmacology</subject><subject>Polyketides - chemical synthesis</subject><subject>Polyketides - chemistry</subject><subject>Polyketides - pharmacology</subject><subject>Pyridones - chemistry</subject><subject>Secondary metabolites</subject><subject>Structure-Activity Relationship</subject><subject>Structure-function relationships</subject><issn>0265-0568</issn><issn>1460-4752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkktv1DAUhS0EotPChj3IajcIEbiO49cGCZVCkSpgAevIsZ2Oh8Se2g7S_HtcpgyPlX11Ph2d62OEnhB4RYCq1xbCFgBEu76HVqTj0HSCtffRClrOGmBcHqHjnDcAhAjOH6IjSonoGGcrtLmYt1Pc-XCNzdrN3ugJ510oa5d9xiXiXBa7w3Wut7SYsiSHdbB4XIIpPgYcR2zi5Addx_ASa3xqdfqOZ12KS6d4dkUPVS_uEXow6im7x3fnCfr2_uLr-WVz9fnDx_O3V43puCpNp8AwaplSXElpuJWDGDllijpg0EmpaGtsp7geWmGcEWCldGLUZhQwCE5P0Ju973YZZmeNCyXpqd8mP-u066P2_b9K8Ov-Ov7ohaiPSGQ1eH5nkOLN4nLpZ5-NmyYdXFxy33ZM8VZyoip69h-6iUsKdb1KccJkjX2b6MWeMinmnNx4CEOgv62wfwefvvyq8LLCz_6Of0B_d1aBp3sgZXNQ__wB-hMRnqHM</recordid><startdate>20201118</startdate><enddate>20201118</enddate><creator>Williams, Peyton C</creator><creator>Wernke, Kevin M</creator><creator>Tirla, Alina</creator><creator>Herzon, Seth B</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8392-0061</orcidid><orcidid>https://orcid.org/0000-0002-7640-2837</orcidid><orcidid>https://orcid.org/0000-0001-5940-9853</orcidid></search><sort><creationdate>20201118</creationdate><title>Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite</title><author>Williams, Peyton C ; Wernke, Kevin M ; Tirla, Alina ; Herzon, Seth B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-490c53d5996988c6d8b7f63593e050488932cd496ab27cec70d88e7facf70b763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Products - chemistry</topic><topic>Biological Products - pharmacology</topic><topic>Chemical synthesis</topic><topic>Dark matter</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Fermentation</topic><topic>Gene clusters</topic><topic>Humans</topic><topic>Metabolites</topic><topic>Molecular Structure</topic><topic>Mutation</topic><topic>Natural products</topic><topic>Peptide Hydrolases - genetics</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Peptides - pharmacology</topic><topic>Polyketides - chemical synthesis</topic><topic>Polyketides - chemistry</topic><topic>Polyketides - pharmacology</topic><topic>Pyridones - chemistry</topic><topic>Secondary metabolites</topic><topic>Structure-Activity Relationship</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Peyton C</creatorcontrib><creatorcontrib>Wernke, Kevin M</creatorcontrib><creatorcontrib>Tirla, Alina</creatorcontrib><creatorcontrib>Herzon, Seth B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Natural product reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Peyton C</au><au>Wernke, Kevin M</au><au>Tirla, Alina</au><au>Herzon, Seth B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite</atitle><jtitle>Natural product reports</jtitle><addtitle>Nat Prod Rep</addtitle><date>2020-11-18</date><risdate>2020</risdate><volume>37</volume><issue>11</issue><spage>1532</spage><epage>1548</epage><pages>1532-1548</pages><issn>0265-0568</issn><eissn>1460-4752</eissn><abstract>Covering: 2015 to 2020
The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut.
This review recounts the chemical journey from 2015 to 2020 that culminated in the structure elucidation of the elusive bacterial metabolite, colibactin.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33174565</pmid><doi>10.1039/d0np00072h</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8392-0061</orcidid><orcidid>https://orcid.org/0000-0002-7640-2837</orcidid><orcidid>https://orcid.org/0000-0001-5940-9853</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-0568 |
ispartof | Natural product reports, 2020-11, Vol.37 (11), p.1532-1548 |
issn | 0265-0568 1460-4752 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0NP00072H |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Biological Products - chemistry Biological Products - pharmacology Chemical synthesis Dark matter Escherichia coli Proteins - genetics Fermentation Gene clusters Humans Metabolites Molecular Structure Mutation Natural products Peptide Hydrolases - genetics Peptides - chemical synthesis Peptides - chemistry Peptides - genetics Peptides - pharmacology Polyketides - chemical synthesis Polyketides - chemistry Polyketides - pharmacology Pyridones - chemistry Secondary metabolites Structure-Activity Relationship Structure-function relationships |
title | Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Employing%20chemical%20synthesis%20to%20study%20the%20structure%20and%20function%20of%20colibactin,%20a%20%22dark%20matter%22%20metabolite&rft.jtitle=Natural%20product%20reports&rft.au=Williams,%20Peyton%20C&rft.date=2020-11-18&rft.volume=37&rft.issue=11&rft.spage=1532&rft.epage=1548&rft.pages=1532-1548&rft.issn=0265-0568&rft.eissn=1460-4752&rft_id=info:doi/10.1039/d0np00072h&rft_dat=%3Cproquest_cross%3E2459628619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461585936&rft_id=info:pmid/33174565&rfr_iscdi=true |