Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite

Covering: 2015 to 2020 The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural product reports 2020-11, Vol.37 (11), p.1532-1548
Hauptverfasser: Williams, Peyton C, Wernke, Kevin M, Tirla, Alina, Herzon, Seth B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1548
container_issue 11
container_start_page 1532
container_title Natural product reports
container_volume 37
creator Williams, Peyton C
Wernke, Kevin M
Tirla, Alina
Herzon, Seth B
description Covering: 2015 to 2020 The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut. This review recounts the chemical journey from 2015 to 2020 that culminated in the structure elucidation of the elusive bacterial metabolite, colibactin.
doi_str_mv 10.1039/d0np00072h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0NP00072H</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459628619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-490c53d5996988c6d8b7f63593e050488932cd496ab27cec70d88e7facf70b763</originalsourceid><addsrcrecordid>eNpdkktv1DAUhS0EotPChj3IajcIEbiO49cGCZVCkSpgAevIsZ2Oh8Se2g7S_HtcpgyPlX11Ph2d62OEnhB4RYCq1xbCFgBEu76HVqTj0HSCtffRClrOGmBcHqHjnDcAhAjOH6IjSonoGGcrtLmYt1Pc-XCNzdrN3ugJ510oa5d9xiXiXBa7w3Wut7SYsiSHdbB4XIIpPgYcR2zi5Addx_ASa3xqdfqOZ12KS6d4dkUPVS_uEXow6im7x3fnCfr2_uLr-WVz9fnDx_O3V43puCpNp8AwaplSXElpuJWDGDllijpg0EmpaGtsp7geWmGcEWCldGLUZhQwCE5P0Ju973YZZmeNCyXpqd8mP-u066P2_b9K8Ov-Ov7ohaiPSGQ1eH5nkOLN4nLpZ5-NmyYdXFxy33ZM8VZyoip69h-6iUsKdb1KccJkjX2b6MWeMinmnNx4CEOgv62wfwefvvyq8LLCz_6Of0B_d1aBp3sgZXNQ__wB-hMRnqHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461585936</pqid></control><display><type>article</type><title>Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Williams, Peyton C ; Wernke, Kevin M ; Tirla, Alina ; Herzon, Seth B</creator><creatorcontrib>Williams, Peyton C ; Wernke, Kevin M ; Tirla, Alina ; Herzon, Seth B</creatorcontrib><description>Covering: 2015 to 2020 The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut. This review recounts the chemical journey from 2015 to 2020 that culminated in the structure elucidation of the elusive bacterial metabolite, colibactin.</description><identifier>ISSN: 0265-0568</identifier><identifier>EISSN: 1460-4752</identifier><identifier>DOI: 10.1039/d0np00072h</identifier><identifier>PMID: 33174565</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biological Products - chemistry ; Biological Products - pharmacology ; Chemical synthesis ; Dark matter ; Escherichia coli Proteins - genetics ; Fermentation ; Gene clusters ; Humans ; Metabolites ; Molecular Structure ; Mutation ; Natural products ; Peptide Hydrolases - genetics ; Peptides - chemical synthesis ; Peptides - chemistry ; Peptides - genetics ; Peptides - pharmacology ; Polyketides - chemical synthesis ; Polyketides - chemistry ; Polyketides - pharmacology ; Pyridones - chemistry ; Secondary metabolites ; Structure-Activity Relationship ; Structure-function relationships</subject><ispartof>Natural product reports, 2020-11, Vol.37 (11), p.1532-1548</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-490c53d5996988c6d8b7f63593e050488932cd496ab27cec70d88e7facf70b763</citedby><cites>FETCH-LOGICAL-c469t-490c53d5996988c6d8b7f63593e050488932cd496ab27cec70d88e7facf70b763</cites><orcidid>0000-0001-8392-0061 ; 0000-0002-7640-2837 ; 0000-0001-5940-9853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33174565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Peyton C</creatorcontrib><creatorcontrib>Wernke, Kevin M</creatorcontrib><creatorcontrib>Tirla, Alina</creatorcontrib><creatorcontrib>Herzon, Seth B</creatorcontrib><title>Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite</title><title>Natural product reports</title><addtitle>Nat Prod Rep</addtitle><description>Covering: 2015 to 2020 The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut. This review recounts the chemical journey from 2015 to 2020 that culminated in the structure elucidation of the elusive bacterial metabolite, colibactin.</description><subject>Biological Products - chemistry</subject><subject>Biological Products - pharmacology</subject><subject>Chemical synthesis</subject><subject>Dark matter</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Fermentation</subject><subject>Gene clusters</subject><subject>Humans</subject><subject>Metabolites</subject><subject>Molecular Structure</subject><subject>Mutation</subject><subject>Natural products</subject><subject>Peptide Hydrolases - genetics</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - chemistry</subject><subject>Peptides - genetics</subject><subject>Peptides - pharmacology</subject><subject>Polyketides - chemical synthesis</subject><subject>Polyketides - chemistry</subject><subject>Polyketides - pharmacology</subject><subject>Pyridones - chemistry</subject><subject>Secondary metabolites</subject><subject>Structure-Activity Relationship</subject><subject>Structure-function relationships</subject><issn>0265-0568</issn><issn>1460-4752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkktv1DAUhS0EotPChj3IajcIEbiO49cGCZVCkSpgAevIsZ2Oh8Se2g7S_HtcpgyPlX11Ph2d62OEnhB4RYCq1xbCFgBEu76HVqTj0HSCtffRClrOGmBcHqHjnDcAhAjOH6IjSonoGGcrtLmYt1Pc-XCNzdrN3ugJ510oa5d9xiXiXBa7w3Wut7SYsiSHdbB4XIIpPgYcR2zi5Addx_ASa3xqdfqOZ12KS6d4dkUPVS_uEXow6im7x3fnCfr2_uLr-WVz9fnDx_O3V43puCpNp8AwaplSXElpuJWDGDllijpg0EmpaGtsp7geWmGcEWCldGLUZhQwCE5P0Ju973YZZmeNCyXpqd8mP-u066P2_b9K8Ov-Ov7ohaiPSGQ1eH5nkOLN4nLpZ5-NmyYdXFxy33ZM8VZyoip69h-6iUsKdb1KccJkjX2b6MWeMinmnNx4CEOgv62wfwefvvyq8LLCz_6Of0B_d1aBp3sgZXNQ__wB-hMRnqHM</recordid><startdate>20201118</startdate><enddate>20201118</enddate><creator>Williams, Peyton C</creator><creator>Wernke, Kevin M</creator><creator>Tirla, Alina</creator><creator>Herzon, Seth B</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8392-0061</orcidid><orcidid>https://orcid.org/0000-0002-7640-2837</orcidid><orcidid>https://orcid.org/0000-0001-5940-9853</orcidid></search><sort><creationdate>20201118</creationdate><title>Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite</title><author>Williams, Peyton C ; Wernke, Kevin M ; Tirla, Alina ; Herzon, Seth B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-490c53d5996988c6d8b7f63593e050488932cd496ab27cec70d88e7facf70b763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Products - chemistry</topic><topic>Biological Products - pharmacology</topic><topic>Chemical synthesis</topic><topic>Dark matter</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Fermentation</topic><topic>Gene clusters</topic><topic>Humans</topic><topic>Metabolites</topic><topic>Molecular Structure</topic><topic>Mutation</topic><topic>Natural products</topic><topic>Peptide Hydrolases - genetics</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - chemistry</topic><topic>Peptides - genetics</topic><topic>Peptides - pharmacology</topic><topic>Polyketides - chemical synthesis</topic><topic>Polyketides - chemistry</topic><topic>Polyketides - pharmacology</topic><topic>Pyridones - chemistry</topic><topic>Secondary metabolites</topic><topic>Structure-Activity Relationship</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Peyton C</creatorcontrib><creatorcontrib>Wernke, Kevin M</creatorcontrib><creatorcontrib>Tirla, Alina</creatorcontrib><creatorcontrib>Herzon, Seth B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Natural product reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Peyton C</au><au>Wernke, Kevin M</au><au>Tirla, Alina</au><au>Herzon, Seth B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite</atitle><jtitle>Natural product reports</jtitle><addtitle>Nat Prod Rep</addtitle><date>2020-11-18</date><risdate>2020</risdate><volume>37</volume><issue>11</issue><spage>1532</spage><epage>1548</epage><pages>1532-1548</pages><issn>0265-0568</issn><eissn>1460-4752</eissn><abstract>Covering: 2015 to 2020 The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut. This review recounts the chemical journey from 2015 to 2020 that culminated in the structure elucidation of the elusive bacterial metabolite, colibactin.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33174565</pmid><doi>10.1039/d0np00072h</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8392-0061</orcidid><orcidid>https://orcid.org/0000-0002-7640-2837</orcidid><orcidid>https://orcid.org/0000-0001-5940-9853</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0265-0568
ispartof Natural product reports, 2020-11, Vol.37 (11), p.1532-1548
issn 0265-0568
1460-4752
language eng
recordid cdi_crossref_primary_10_1039_D0NP00072H
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Biological Products - chemistry
Biological Products - pharmacology
Chemical synthesis
Dark matter
Escherichia coli Proteins - genetics
Fermentation
Gene clusters
Humans
Metabolites
Molecular Structure
Mutation
Natural products
Peptide Hydrolases - genetics
Peptides - chemical synthesis
Peptides - chemistry
Peptides - genetics
Peptides - pharmacology
Polyketides - chemical synthesis
Polyketides - chemistry
Polyketides - pharmacology
Pyridones - chemistry
Secondary metabolites
Structure-Activity Relationship
Structure-function relationships
title Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Employing%20chemical%20synthesis%20to%20study%20the%20structure%20and%20function%20of%20colibactin,%20a%20%22dark%20matter%22%20metabolite&rft.jtitle=Natural%20product%20reports&rft.au=Williams,%20Peyton%20C&rft.date=2020-11-18&rft.volume=37&rft.issue=11&rft.spage=1532&rft.epage=1548&rft.pages=1532-1548&rft.issn=0265-0568&rft.eissn=1460-4752&rft_id=info:doi/10.1039/d0np00072h&rft_dat=%3Cproquest_cross%3E2459628619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461585936&rft_id=info:pmid/33174565&rfr_iscdi=true