Enhanced and unconventional responses in chemiresistive sensing devices for nitrogen dioxide and ammonia from carboxylated alkylthiophene polymers
A carboxylated thiophene polymer-based chemiresistive device in a field-effect transistor (FET) configuration with unusual and enhanced responses to the widespread pollutants nitrogen dioxide (NO 2 ) and ammonia (NH 3 ) is described. The device based on a polymeric thiophene carboxylic acid showed a...
Gespeichert in:
Veröffentlicht in: | Materials horizons 2020-01, Vol.7 (5), p.1358-1371 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1371 |
---|---|
container_issue | 5 |
container_start_page | 1358 |
container_title | Materials horizons |
container_volume | 7 |
creator | Wagner, Justine Jang, Hyun-June Han, Jinfeng Katz, Howard E |
description | A carboxylated thiophene polymer-based chemiresistive device in a field-effect transistor (FET) configuration with unusual and enhanced responses to the widespread pollutants nitrogen dioxide (NO
2
) and ammonia (NH
3
) is described. The device based on a polymeric thiophene carboxylic acid showed a dramatic and superlinear increase in drain current (
I
D
) of over 15 000% to a ramped exposure to 10 ppm NO
2
over several minutes, while its ethyl ester counterpart had significantly lower response. Devices incorporating either an ester or carboxylic acid displayed comparable and previously unreported increases in
I
D
from 10 ppm ramped NH
3
exposure of 200-300%. Conventional poly(alkylthiophenes) showed the expected current decreases from similar NH
3
exposures. Using threshold voltage shifts in silicon transistors coupled to our recently reported remote gate (RG) platform with thiophene polymer coatings, we determined that two differing response mechanisms are associated with the two gas exposures. By calculating the charge density induced in the polymers by NO
2
exposure using the silicon transistor voltage shifts, we conclude that proton conduction contributes significantly to the high sensitivity of the carboxylic acid to NO
2
, in addition to doping that was observed for all four polymers. Furthermore, hydrogen bonding moieties of the carboxylic acid and ester may be able to physisorb NH
3
and thus alter the charge distribution, rearrange polymer chains, and/or create a proton transfer network leading to the
I
D
increase that is the opposite of the response obtained from non-carboxylated thiophene polymers.
A carboxylated thiophene polymer-based chemiresistive device in a field-effect transistor (FET) configuration with unusual and enhanced responses to the widespread pollutants nitrogen dioxide (NO
2
) and ammonia (NH
3
) is described. |
doi_str_mv | 10.1039/d0mh00049c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0MH00049C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400288252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-140330e32865f0c72f0a9e9a2e365d8266eff7c0a44bed5501208ad08b98ce433</originalsourceid><addsrcrecordid>eNp90UtLxDAQAOAiCsrqxbsQ8SZUp3l026Os6wNWvOi5ZJOJjbZJTbrL9m_4i62u6M3TDMPHDDOTJMcZXGTAyksNbQ0AvFQ7yQEFkaU5E2L3N-fT_eQoxtfRZIwLKOAg-Zi7WjqFmkinycop79boeuudbEjA2HkXMRLriKqxtWPFxt6ukUR00boXonFt1SiMD8TZPvgXdERbv7Eav3vKtvXOSmKCb4mSYek3QyP7r4nN29D0tfVdjQ5J55uhxRAPkz0jm4hHP3GSPN_Mn2Z36eLx9n52tUgVz6BPMw6MATJa5MKAmlIDssRSUmS50AXNczRmqkByvkQtBGQUCqmhWJaFQs7YJDnb9u2Cf19h7KtXvwrj3rGiHIAWBRV0VOdbpYKPMaCpumBbGYYqg-rr7NU1PNx9n3024tMtDlH9ur-3VJ02ozn5z7BPyyeN3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400288252</pqid></control><display><type>article</type><title>Enhanced and unconventional responses in chemiresistive sensing devices for nitrogen dioxide and ammonia from carboxylated alkylthiophene polymers</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wagner, Justine ; Jang, Hyun-June ; Han, Jinfeng ; Katz, Howard E</creator><creatorcontrib>Wagner, Justine ; Jang, Hyun-June ; Han, Jinfeng ; Katz, Howard E</creatorcontrib><description>A carboxylated thiophene polymer-based chemiresistive device in a field-effect transistor (FET) configuration with unusual and enhanced responses to the widespread pollutants nitrogen dioxide (NO
2
) and ammonia (NH
3
) is described. The device based on a polymeric thiophene carboxylic acid showed a dramatic and superlinear increase in drain current (
I
D
) of over 15 000% to a ramped exposure to 10 ppm NO
2
over several minutes, while its ethyl ester counterpart had significantly lower response. Devices incorporating either an ester or carboxylic acid displayed comparable and previously unreported increases in
I
D
from 10 ppm ramped NH
3
exposure of 200-300%. Conventional poly(alkylthiophenes) showed the expected current decreases from similar NH
3
exposures. Using threshold voltage shifts in silicon transistors coupled to our recently reported remote gate (RG) platform with thiophene polymer coatings, we determined that two differing response mechanisms are associated with the two gas exposures. By calculating the charge density induced in the polymers by NO
2
exposure using the silicon transistor voltage shifts, we conclude that proton conduction contributes significantly to the high sensitivity of the carboxylic acid to NO
2
, in addition to doping that was observed for all four polymers. Furthermore, hydrogen bonding moieties of the carboxylic acid and ester may be able to physisorb NH
3
and thus alter the charge distribution, rearrange polymer chains, and/or create a proton transfer network leading to the
I
D
increase that is the opposite of the response obtained from non-carboxylated thiophene polymers.
A carboxylated thiophene polymer-based chemiresistive device in a field-effect transistor (FET) configuration with unusual and enhanced responses to the widespread pollutants nitrogen dioxide (NO
2
) and ammonia (NH
3
) is described.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d0mh00049c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acids ; Ammonia ; Carboxylic acids ; Charge density ; Charge distribution ; Exposure ; Field effect transistors ; Hydrogen bonding ; Nitrogen dioxide ; Pollutants ; Polymer coatings ; Polymers ; Proton conduction ; Semiconductor devices ; Sensors ; Silicon transistors ; Threshold voltage ; Transistors</subject><ispartof>Materials horizons, 2020-01, Vol.7 (5), p.1358-1371</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-140330e32865f0c72f0a9e9a2e365d8266eff7c0a44bed5501208ad08b98ce433</citedby><cites>FETCH-LOGICAL-c410t-140330e32865f0c72f0a9e9a2e365d8266eff7c0a44bed5501208ad08b98ce433</cites><orcidid>0000-0002-3190-2475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wagner, Justine</creatorcontrib><creatorcontrib>Jang, Hyun-June</creatorcontrib><creatorcontrib>Han, Jinfeng</creatorcontrib><creatorcontrib>Katz, Howard E</creatorcontrib><title>Enhanced and unconventional responses in chemiresistive sensing devices for nitrogen dioxide and ammonia from carboxylated alkylthiophene polymers</title><title>Materials horizons</title><description>A carboxylated thiophene polymer-based chemiresistive device in a field-effect transistor (FET) configuration with unusual and enhanced responses to the widespread pollutants nitrogen dioxide (NO
2
) and ammonia (NH
3
) is described. The device based on a polymeric thiophene carboxylic acid showed a dramatic and superlinear increase in drain current (
I
D
) of over 15 000% to a ramped exposure to 10 ppm NO
2
over several minutes, while its ethyl ester counterpart had significantly lower response. Devices incorporating either an ester or carboxylic acid displayed comparable and previously unreported increases in
I
D
from 10 ppm ramped NH
3
exposure of 200-300%. Conventional poly(alkylthiophenes) showed the expected current decreases from similar NH
3
exposures. Using threshold voltage shifts in silicon transistors coupled to our recently reported remote gate (RG) platform with thiophene polymer coatings, we determined that two differing response mechanisms are associated with the two gas exposures. By calculating the charge density induced in the polymers by NO
2
exposure using the silicon transistor voltage shifts, we conclude that proton conduction contributes significantly to the high sensitivity of the carboxylic acid to NO
2
, in addition to doping that was observed for all four polymers. Furthermore, hydrogen bonding moieties of the carboxylic acid and ester may be able to physisorb NH
3
and thus alter the charge distribution, rearrange polymer chains, and/or create a proton transfer network leading to the
I
D
increase that is the opposite of the response obtained from non-carboxylated thiophene polymers.
A carboxylated thiophene polymer-based chemiresistive device in a field-effect transistor (FET) configuration with unusual and enhanced responses to the widespread pollutants nitrogen dioxide (NO
2
) and ammonia (NH
3
) is described.</description><subject>Acids</subject><subject>Ammonia</subject><subject>Carboxylic acids</subject><subject>Charge density</subject><subject>Charge distribution</subject><subject>Exposure</subject><subject>Field effect transistors</subject><subject>Hydrogen bonding</subject><subject>Nitrogen dioxide</subject><subject>Pollutants</subject><subject>Polymer coatings</subject><subject>Polymers</subject><subject>Proton conduction</subject><subject>Semiconductor devices</subject><subject>Sensors</subject><subject>Silicon transistors</subject><subject>Threshold voltage</subject><subject>Transistors</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90UtLxDAQAOAiCsrqxbsQ8SZUp3l026Os6wNWvOi5ZJOJjbZJTbrL9m_4i62u6M3TDMPHDDOTJMcZXGTAyksNbQ0AvFQ7yQEFkaU5E2L3N-fT_eQoxtfRZIwLKOAg-Zi7WjqFmkinycop79boeuudbEjA2HkXMRLriKqxtWPFxt6ukUR00boXonFt1SiMD8TZPvgXdERbv7Eav3vKtvXOSmKCb4mSYek3QyP7r4nN29D0tfVdjQ5J55uhxRAPkz0jm4hHP3GSPN_Mn2Z36eLx9n52tUgVz6BPMw6MATJa5MKAmlIDssRSUmS50AXNczRmqkByvkQtBGQUCqmhWJaFQs7YJDnb9u2Cf19h7KtXvwrj3rGiHIAWBRV0VOdbpYKPMaCpumBbGYYqg-rr7NU1PNx9n3024tMtDlH9ur-3VJ02ozn5z7BPyyeN3Q</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wagner, Justine</creator><creator>Jang, Hyun-June</creator><creator>Han, Jinfeng</creator><creator>Katz, Howard E</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3190-2475</orcidid></search><sort><creationdate>20200101</creationdate><title>Enhanced and unconventional responses in chemiresistive sensing devices for nitrogen dioxide and ammonia from carboxylated alkylthiophene polymers</title><author>Wagner, Justine ; Jang, Hyun-June ; Han, Jinfeng ; Katz, Howard E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-140330e32865f0c72f0a9e9a2e365d8266eff7c0a44bed5501208ad08b98ce433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Ammonia</topic><topic>Carboxylic acids</topic><topic>Charge density</topic><topic>Charge distribution</topic><topic>Exposure</topic><topic>Field effect transistors</topic><topic>Hydrogen bonding</topic><topic>Nitrogen dioxide</topic><topic>Pollutants</topic><topic>Polymer coatings</topic><topic>Polymers</topic><topic>Proton conduction</topic><topic>Semiconductor devices</topic><topic>Sensors</topic><topic>Silicon transistors</topic><topic>Threshold voltage</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Justine</creatorcontrib><creatorcontrib>Jang, Hyun-June</creatorcontrib><creatorcontrib>Han, Jinfeng</creatorcontrib><creatorcontrib>Katz, Howard E</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Justine</au><au>Jang, Hyun-June</au><au>Han, Jinfeng</au><au>Katz, Howard E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced and unconventional responses in chemiresistive sensing devices for nitrogen dioxide and ammonia from carboxylated alkylthiophene polymers</atitle><jtitle>Materials horizons</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>7</volume><issue>5</issue><spage>1358</spage><epage>1371</epage><pages>1358-1371</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>A carboxylated thiophene polymer-based chemiresistive device in a field-effect transistor (FET) configuration with unusual and enhanced responses to the widespread pollutants nitrogen dioxide (NO
2
) and ammonia (NH
3
) is described. The device based on a polymeric thiophene carboxylic acid showed a dramatic and superlinear increase in drain current (
I
D
) of over 15 000% to a ramped exposure to 10 ppm NO
2
over several minutes, while its ethyl ester counterpart had significantly lower response. Devices incorporating either an ester or carboxylic acid displayed comparable and previously unreported increases in
I
D
from 10 ppm ramped NH
3
exposure of 200-300%. Conventional poly(alkylthiophenes) showed the expected current decreases from similar NH
3
exposures. Using threshold voltage shifts in silicon transistors coupled to our recently reported remote gate (RG) platform with thiophene polymer coatings, we determined that two differing response mechanisms are associated with the two gas exposures. By calculating the charge density induced in the polymers by NO
2
exposure using the silicon transistor voltage shifts, we conclude that proton conduction contributes significantly to the high sensitivity of the carboxylic acid to NO
2
, in addition to doping that was observed for all four polymers. Furthermore, hydrogen bonding moieties of the carboxylic acid and ester may be able to physisorb NH
3
and thus alter the charge distribution, rearrange polymer chains, and/or create a proton transfer network leading to the
I
D
increase that is the opposite of the response obtained from non-carboxylated thiophene polymers.
A carboxylated thiophene polymer-based chemiresistive device in a field-effect transistor (FET) configuration with unusual and enhanced responses to the widespread pollutants nitrogen dioxide (NO
2
) and ammonia (NH
3
) is described.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0mh00049c</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3190-2475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-6347 |
ispartof | Materials horizons, 2020-01, Vol.7 (5), p.1358-1371 |
issn | 2051-6347 2051-6355 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0MH00049C |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Acids Ammonia Carboxylic acids Charge density Charge distribution Exposure Field effect transistors Hydrogen bonding Nitrogen dioxide Pollutants Polymer coatings Polymers Proton conduction Semiconductor devices Sensors Silicon transistors Threshold voltage Transistors |
title | Enhanced and unconventional responses in chemiresistive sensing devices for nitrogen dioxide and ammonia from carboxylated alkylthiophene polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20and%20unconventional%20responses%20in%20chemiresistive%20sensing%20devices%20for%20nitrogen%20dioxide%20and%20ammonia%20from%20carboxylated%20alkylthiophene%20polymers&rft.jtitle=Materials%20horizons&rft.au=Wagner,%20Justine&rft.date=2020-01-01&rft.volume=7&rft.issue=5&rft.spage=1358&rft.epage=1371&rft.pages=1358-1371&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d0mh00049c&rft_dat=%3Cproquest_cross%3E2400288252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400288252&rft_id=info:pmid/&rfr_iscdi=true |