Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis

Process intensification is a cornerstone to achieve a significant reduction in energy consumption and CO 2 emissions in the chemical industry. In this context, a monolithic membrane reactor combining homogeneous catalytic gas-phase hydroformylation of but-1-ene with in situ product removal is here p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2020-09, Vol.22 (17), p.5691-57
Hauptverfasser: Logemann, Morten, Marinkovic, Jakob Maximilian, Schörner, Markus, José García-Suárez, Eduardo, Hecht, Corinna, Franke, Robert, Wessling, Matthias, Riisager, Anders, Fehrmann, Rasmus, Haumann, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 17
container_start_page 5691
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 22
creator Logemann, Morten
Marinkovic, Jakob Maximilian
Schörner, Markus
José García-Suárez, Eduardo
Hecht, Corinna
Franke, Robert
Wessling, Matthias
Riisager, Anders
Fehrmann, Rasmus
Haumann, Marco
description Process intensification is a cornerstone to achieve a significant reduction in energy consumption and CO 2 emissions in the chemical industry. In this context, a monolithic membrane reactor combining homogeneous catalytic gas-phase hydroformylation of but-1-ene with in situ product removal is here presented. The homogeneous supported ionic liquid-phase (SILP) catalyst consists of a Rh-biphephos complex dissolved in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C 2 C 1 Im][NTf 2 ] and immobilized on a mesoporous silicon carbide monolith. The resulting monolith is catalytically active and selective towards linear aldehyde formation, but the accumulation of aldehyde products and high boilers in the ionic liquid leads to slow catalyst deactivation. This accumulation is suppressed when bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate is used as alternative solvent, where only marginal aldehyde accumulation and aldol formation occur. A polydimethylsiloxane (PDMS) membrane coating of the monolith increases the aldehyde-alkene ratio by an enrichment factor of 2.2 in the permeate gas compared to the retentate gas from the reactor simplifying further downstream processing. The monolithic membrane reactor loaded with SILP or SLP catalysts presents a scalable, versatile platform to achieve process intensification for diverse hydroformylation reactions as well as related gas-phase reactions. The development of a supported liquid phase (SLP) gas-phase hydroformylation catalyst combined with a monolithic membrane separation layer is reported.
doi_str_mv 10.1039/d0gc01483d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0GC01483D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438576583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-a7507fb21d36c4ca6a9b32ab1c3cce995e9575c9435c32c072e7e3526df9839c3</originalsourceid><addsrcrecordid>eNpFkEFLwzAYhoMoOKcX70LAiwrVJF_TNEfpdAoDBfVc0jTdOtqmS9JD_73VyTx97wcP7wsPQpeU3FMC8qEka01onEJ5hGY0TiCSTJDjQ07YKTrzfksIpSKJZ8hltgt1N9jB47XyUb9R3uDNWDpbWdeOjQq17bCtcDGEiEamM7jusMKtaQunps8ZpYN1uBixH_reumBK3NS7oS7_2m4-Vu-3WKugmtHX_hydVKrx5uLvztHX89Nn9hKt3pav2eMq0kDTECnBiagKRktIdKxVomQBTBVUg9ZGSm4kF1zLGLgGpolgRhjgLCkrmYLUMEfX-97e2d1gfMi3dnDdNJmzGFIuEp7CRN3tKe2s985Uee_qVrkxpyT_cZovyDL7dbqY4Ks97Lw-cP_O4Ruo13Ps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438576583</pqid></control><display><type>article</type><title>Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Logemann, Morten ; Marinkovic, Jakob Maximilian ; Schörner, Markus ; José García-Suárez, Eduardo ; Hecht, Corinna ; Franke, Robert ; Wessling, Matthias ; Riisager, Anders ; Fehrmann, Rasmus ; Haumann, Marco</creator><creatorcontrib>Logemann, Morten ; Marinkovic, Jakob Maximilian ; Schörner, Markus ; José García-Suárez, Eduardo ; Hecht, Corinna ; Franke, Robert ; Wessling, Matthias ; Riisager, Anders ; Fehrmann, Rasmus ; Haumann, Marco</creatorcontrib><description>Process intensification is a cornerstone to achieve a significant reduction in energy consumption and CO 2 emissions in the chemical industry. In this context, a monolithic membrane reactor combining homogeneous catalytic gas-phase hydroformylation of but-1-ene with in situ product removal is here presented. The homogeneous supported ionic liquid-phase (SILP) catalyst consists of a Rh-biphephos complex dissolved in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C 2 C 1 Im][NTf 2 ] and immobilized on a mesoporous silicon carbide monolith. The resulting monolith is catalytically active and selective towards linear aldehyde formation, but the accumulation of aldehyde products and high boilers in the ionic liquid leads to slow catalyst deactivation. This accumulation is suppressed when bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate is used as alternative solvent, where only marginal aldehyde accumulation and aldol formation occur. A polydimethylsiloxane (PDMS) membrane coating of the monolith increases the aldehyde-alkene ratio by an enrichment factor of 2.2 in the permeate gas compared to the retentate gas from the reactor simplifying further downstream processing. The monolithic membrane reactor loaded with SILP or SLP catalysts presents a scalable, versatile platform to achieve process intensification for diverse hydroformylation reactions as well as related gas-phase reactions. The development of a supported liquid phase (SLP) gas-phase hydroformylation catalyst combined with a monolithic membrane separation layer is reported.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d0gc01483d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Accumulation ; Aldehydes ; Boilers ; Carbon dioxide ; Carbon dioxide emissions ; Catalysis ; Catalysts ; Chemical industry ; Deactivation ; Energy consumption ; Green chemistry ; Ionic liquids ; Liquid phases ; Membrane reactors ; Membranes ; Monolithic materials ; Polydimethylsiloxane ; Process intensification ; Reactors ; Silicon carbide</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2020-09, Vol.22 (17), p.5691-57</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-a7507fb21d36c4ca6a9b32ab1c3cce995e9575c9435c32c072e7e3526df9839c3</citedby><cites>FETCH-LOGICAL-c318t-a7507fb21d36c4ca6a9b32ab1c3cce995e9575c9435c32c072e7e3526df9839c3</cites><orcidid>0000-0002-7874-5315 ; 0000-0001-5309-3050 ; 0000-0002-0630-5679 ; 0000-0002-7086-1143 ; 0000-0002-3896-365X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Logemann, Morten</creatorcontrib><creatorcontrib>Marinkovic, Jakob Maximilian</creatorcontrib><creatorcontrib>Schörner, Markus</creatorcontrib><creatorcontrib>José García-Suárez, Eduardo</creatorcontrib><creatorcontrib>Hecht, Corinna</creatorcontrib><creatorcontrib>Franke, Robert</creatorcontrib><creatorcontrib>Wessling, Matthias</creatorcontrib><creatorcontrib>Riisager, Anders</creatorcontrib><creatorcontrib>Fehrmann, Rasmus</creatorcontrib><creatorcontrib>Haumann, Marco</creatorcontrib><title>Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Process intensification is a cornerstone to achieve a significant reduction in energy consumption and CO 2 emissions in the chemical industry. In this context, a monolithic membrane reactor combining homogeneous catalytic gas-phase hydroformylation of but-1-ene with in situ product removal is here presented. The homogeneous supported ionic liquid-phase (SILP) catalyst consists of a Rh-biphephos complex dissolved in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C 2 C 1 Im][NTf 2 ] and immobilized on a mesoporous silicon carbide monolith. The resulting monolith is catalytically active and selective towards linear aldehyde formation, but the accumulation of aldehyde products and high boilers in the ionic liquid leads to slow catalyst deactivation. This accumulation is suppressed when bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate is used as alternative solvent, where only marginal aldehyde accumulation and aldol formation occur. A polydimethylsiloxane (PDMS) membrane coating of the monolith increases the aldehyde-alkene ratio by an enrichment factor of 2.2 in the permeate gas compared to the retentate gas from the reactor simplifying further downstream processing. The monolithic membrane reactor loaded with SILP or SLP catalysts presents a scalable, versatile platform to achieve process intensification for diverse hydroformylation reactions as well as related gas-phase reactions. The development of a supported liquid phase (SLP) gas-phase hydroformylation catalyst combined with a monolithic membrane separation layer is reported.</description><subject>Accumulation</subject><subject>Aldehydes</subject><subject>Boilers</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical industry</subject><subject>Deactivation</subject><subject>Energy consumption</subject><subject>Green chemistry</subject><subject>Ionic liquids</subject><subject>Liquid phases</subject><subject>Membrane reactors</subject><subject>Membranes</subject><subject>Monolithic materials</subject><subject>Polydimethylsiloxane</subject><subject>Process intensification</subject><subject>Reactors</subject><subject>Silicon carbide</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLwzAYhoMoOKcX70LAiwrVJF_TNEfpdAoDBfVc0jTdOtqmS9JD_73VyTx97wcP7wsPQpeU3FMC8qEka01onEJ5hGY0TiCSTJDjQ07YKTrzfksIpSKJZ8hltgt1N9jB47XyUb9R3uDNWDpbWdeOjQq17bCtcDGEiEamM7jusMKtaQunps8ZpYN1uBixH_reumBK3NS7oS7_2m4-Vu-3WKugmtHX_hydVKrx5uLvztHX89Nn9hKt3pav2eMq0kDTECnBiagKRktIdKxVomQBTBVUg9ZGSm4kF1zLGLgGpolgRhjgLCkrmYLUMEfX-97e2d1gfMi3dnDdNJmzGFIuEp7CRN3tKe2s985Uee_qVrkxpyT_cZovyDL7dbqY4Ks97Lw-cP_O4Ruo13Ps</recordid><startdate>20200907</startdate><enddate>20200907</enddate><creator>Logemann, Morten</creator><creator>Marinkovic, Jakob Maximilian</creator><creator>Schörner, Markus</creator><creator>José García-Suárez, Eduardo</creator><creator>Hecht, Corinna</creator><creator>Franke, Robert</creator><creator>Wessling, Matthias</creator><creator>Riisager, Anders</creator><creator>Fehrmann, Rasmus</creator><creator>Haumann, Marco</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7874-5315</orcidid><orcidid>https://orcid.org/0000-0001-5309-3050</orcidid><orcidid>https://orcid.org/0000-0002-0630-5679</orcidid><orcidid>https://orcid.org/0000-0002-7086-1143</orcidid><orcidid>https://orcid.org/0000-0002-3896-365X</orcidid></search><sort><creationdate>20200907</creationdate><title>Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis</title><author>Logemann, Morten ; Marinkovic, Jakob Maximilian ; Schörner, Markus ; José García-Suárez, Eduardo ; Hecht, Corinna ; Franke, Robert ; Wessling, Matthias ; Riisager, Anders ; Fehrmann, Rasmus ; Haumann, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-a7507fb21d36c4ca6a9b32ab1c3cce995e9575c9435c32c072e7e3526df9839c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Aldehydes</topic><topic>Boilers</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical industry</topic><topic>Deactivation</topic><topic>Energy consumption</topic><topic>Green chemistry</topic><topic>Ionic liquids</topic><topic>Liquid phases</topic><topic>Membrane reactors</topic><topic>Membranes</topic><topic>Monolithic materials</topic><topic>Polydimethylsiloxane</topic><topic>Process intensification</topic><topic>Reactors</topic><topic>Silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logemann, Morten</creatorcontrib><creatorcontrib>Marinkovic, Jakob Maximilian</creatorcontrib><creatorcontrib>Schörner, Markus</creatorcontrib><creatorcontrib>José García-Suárez, Eduardo</creatorcontrib><creatorcontrib>Hecht, Corinna</creatorcontrib><creatorcontrib>Franke, Robert</creatorcontrib><creatorcontrib>Wessling, Matthias</creatorcontrib><creatorcontrib>Riisager, Anders</creatorcontrib><creatorcontrib>Fehrmann, Rasmus</creatorcontrib><creatorcontrib>Haumann, Marco</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logemann, Morten</au><au>Marinkovic, Jakob Maximilian</au><au>Schörner, Markus</au><au>José García-Suárez, Eduardo</au><au>Hecht, Corinna</au><au>Franke, Robert</au><au>Wessling, Matthias</au><au>Riisager, Anders</au><au>Fehrmann, Rasmus</au><au>Haumann, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2020-09-07</date><risdate>2020</risdate><volume>22</volume><issue>17</issue><spage>5691</spage><epage>57</epage><pages>5691-57</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Process intensification is a cornerstone to achieve a significant reduction in energy consumption and CO 2 emissions in the chemical industry. In this context, a monolithic membrane reactor combining homogeneous catalytic gas-phase hydroformylation of but-1-ene with in situ product removal is here presented. The homogeneous supported ionic liquid-phase (SILP) catalyst consists of a Rh-biphephos complex dissolved in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C 2 C 1 Im][NTf 2 ] and immobilized on a mesoporous silicon carbide monolith. The resulting monolith is catalytically active and selective towards linear aldehyde formation, but the accumulation of aldehyde products and high boilers in the ionic liquid leads to slow catalyst deactivation. This accumulation is suppressed when bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate is used as alternative solvent, where only marginal aldehyde accumulation and aldol formation occur. A polydimethylsiloxane (PDMS) membrane coating of the monolith increases the aldehyde-alkene ratio by an enrichment factor of 2.2 in the permeate gas compared to the retentate gas from the reactor simplifying further downstream processing. The monolithic membrane reactor loaded with SILP or SLP catalysts presents a scalable, versatile platform to achieve process intensification for diverse hydroformylation reactions as well as related gas-phase reactions. The development of a supported liquid phase (SLP) gas-phase hydroformylation catalyst combined with a monolithic membrane separation layer is reported.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0gc01483d</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7874-5315</orcidid><orcidid>https://orcid.org/0000-0001-5309-3050</orcidid><orcidid>https://orcid.org/0000-0002-0630-5679</orcidid><orcidid>https://orcid.org/0000-0002-7086-1143</orcidid><orcidid>https://orcid.org/0000-0002-3896-365X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2020-09, Vol.22 (17), p.5691-57
issn 1463-9262
1463-9270
language eng
recordid cdi_crossref_primary_10_1039_D0GC01483D
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Accumulation
Aldehydes
Boilers
Carbon dioxide
Carbon dioxide emissions
Catalysis
Catalysts
Chemical industry
Deactivation
Energy consumption
Green chemistry
Ionic liquids
Liquid phases
Membrane reactors
Membranes
Monolithic materials
Polydimethylsiloxane
Process intensification
Reactors
Silicon carbide
title Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20gas-phase%20hydroformylation%20of%20but-1-ene%20in%20a%20membrane%20reactor%20by%20supported%20liquid-phase%20(SLP)%20catalysis&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Logemann,%20Morten&rft.date=2020-09-07&rft.volume=22&rft.issue=17&rft.spage=5691&rft.epage=57&rft.pages=5691-57&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d0gc01483d&rft_dat=%3Cproquest_cross%3E2438576583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438576583&rft_id=info:pmid/&rfr_iscdi=true