Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis
Process intensification is a cornerstone to achieve a significant reduction in energy consumption and CO 2 emissions in the chemical industry. In this context, a monolithic membrane reactor combining homogeneous catalytic gas-phase hydroformylation of but-1-ene with in situ product removal is here p...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2020-09, Vol.22 (17), p.5691-57 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 17 |
container_start_page | 5691 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 22 |
creator | Logemann, Morten Marinkovic, Jakob Maximilian Schörner, Markus José García-Suárez, Eduardo Hecht, Corinna Franke, Robert Wessling, Matthias Riisager, Anders Fehrmann, Rasmus Haumann, Marco |
description | Process intensification is a cornerstone to achieve a significant reduction in energy consumption and CO
2
emissions in the chemical industry. In this context, a monolithic membrane reactor combining homogeneous catalytic gas-phase hydroformylation of but-1-ene with
in situ
product removal is here presented. The homogeneous supported ionic liquid-phase (SILP) catalyst consists of a Rh-biphephos complex dissolved in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C
2
C
1
Im][NTf
2
] and immobilized on a mesoporous silicon carbide monolith. The resulting monolith is catalytically active and selective towards linear aldehyde formation, but the accumulation of aldehyde products and high boilers in the ionic liquid leads to slow catalyst deactivation. This accumulation is suppressed when bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate is used as alternative solvent, where only marginal aldehyde accumulation and aldol formation occur. A polydimethylsiloxane (PDMS) membrane coating of the monolith increases the aldehyde-alkene ratio by an enrichment factor of 2.2 in the permeate gas compared to the retentate gas from the reactor simplifying further downstream processing. The monolithic membrane reactor loaded with SILP or SLP catalysts presents a scalable, versatile platform to achieve process intensification for diverse hydroformylation reactions as well as related gas-phase reactions.
The development of a supported liquid phase (SLP) gas-phase hydroformylation catalyst combined with a monolithic membrane separation layer is reported. |
doi_str_mv | 10.1039/d0gc01483d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0GC01483D</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438576583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-a7507fb21d36c4ca6a9b32ab1c3cce995e9575c9435c32c072e7e3526df9839c3</originalsourceid><addsrcrecordid>eNpFkEFLwzAYhoMoOKcX70LAiwrVJF_TNEfpdAoDBfVc0jTdOtqmS9JD_73VyTx97wcP7wsPQpeU3FMC8qEka01onEJ5hGY0TiCSTJDjQ07YKTrzfksIpSKJZ8hltgt1N9jB47XyUb9R3uDNWDpbWdeOjQq17bCtcDGEiEamM7jusMKtaQunps8ZpYN1uBixH_reumBK3NS7oS7_2m4-Vu-3WKugmtHX_hydVKrx5uLvztHX89Nn9hKt3pav2eMq0kDTECnBiagKRktIdKxVomQBTBVUg9ZGSm4kF1zLGLgGpolgRhjgLCkrmYLUMEfX-97e2d1gfMi3dnDdNJmzGFIuEp7CRN3tKe2s985Uee_qVrkxpyT_cZovyDL7dbqY4Ks97Lw-cP_O4Ruo13Ps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438576583</pqid></control><display><type>article</type><title>Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Logemann, Morten ; Marinkovic, Jakob Maximilian ; Schörner, Markus ; José García-Suárez, Eduardo ; Hecht, Corinna ; Franke, Robert ; Wessling, Matthias ; Riisager, Anders ; Fehrmann, Rasmus ; Haumann, Marco</creator><creatorcontrib>Logemann, Morten ; Marinkovic, Jakob Maximilian ; Schörner, Markus ; José García-Suárez, Eduardo ; Hecht, Corinna ; Franke, Robert ; Wessling, Matthias ; Riisager, Anders ; Fehrmann, Rasmus ; Haumann, Marco</creatorcontrib><description>Process intensification is a cornerstone to achieve a significant reduction in energy consumption and CO
2
emissions in the chemical industry. In this context, a monolithic membrane reactor combining homogeneous catalytic gas-phase hydroformylation of but-1-ene with
in situ
product removal is here presented. The homogeneous supported ionic liquid-phase (SILP) catalyst consists of a Rh-biphephos complex dissolved in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C
2
C
1
Im][NTf
2
] and immobilized on a mesoporous silicon carbide monolith. The resulting monolith is catalytically active and selective towards linear aldehyde formation, but the accumulation of aldehyde products and high boilers in the ionic liquid leads to slow catalyst deactivation. This accumulation is suppressed when bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate is used as alternative solvent, where only marginal aldehyde accumulation and aldol formation occur. A polydimethylsiloxane (PDMS) membrane coating of the monolith increases the aldehyde-alkene ratio by an enrichment factor of 2.2 in the permeate gas compared to the retentate gas from the reactor simplifying further downstream processing. The monolithic membrane reactor loaded with SILP or SLP catalysts presents a scalable, versatile platform to achieve process intensification for diverse hydroformylation reactions as well as related gas-phase reactions.
The development of a supported liquid phase (SLP) gas-phase hydroformylation catalyst combined with a monolithic membrane separation layer is reported.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d0gc01483d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Accumulation ; Aldehydes ; Boilers ; Carbon dioxide ; Carbon dioxide emissions ; Catalysis ; Catalysts ; Chemical industry ; Deactivation ; Energy consumption ; Green chemistry ; Ionic liquids ; Liquid phases ; Membrane reactors ; Membranes ; Monolithic materials ; Polydimethylsiloxane ; Process intensification ; Reactors ; Silicon carbide</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2020-09, Vol.22 (17), p.5691-57</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-a7507fb21d36c4ca6a9b32ab1c3cce995e9575c9435c32c072e7e3526df9839c3</citedby><cites>FETCH-LOGICAL-c318t-a7507fb21d36c4ca6a9b32ab1c3cce995e9575c9435c32c072e7e3526df9839c3</cites><orcidid>0000-0002-7874-5315 ; 0000-0001-5309-3050 ; 0000-0002-0630-5679 ; 0000-0002-7086-1143 ; 0000-0002-3896-365X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Logemann, Morten</creatorcontrib><creatorcontrib>Marinkovic, Jakob Maximilian</creatorcontrib><creatorcontrib>Schörner, Markus</creatorcontrib><creatorcontrib>José García-Suárez, Eduardo</creatorcontrib><creatorcontrib>Hecht, Corinna</creatorcontrib><creatorcontrib>Franke, Robert</creatorcontrib><creatorcontrib>Wessling, Matthias</creatorcontrib><creatorcontrib>Riisager, Anders</creatorcontrib><creatorcontrib>Fehrmann, Rasmus</creatorcontrib><creatorcontrib>Haumann, Marco</creatorcontrib><title>Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Process intensification is a cornerstone to achieve a significant reduction in energy consumption and CO
2
emissions in the chemical industry. In this context, a monolithic membrane reactor combining homogeneous catalytic gas-phase hydroformylation of but-1-ene with
in situ
product removal is here presented. The homogeneous supported ionic liquid-phase (SILP) catalyst consists of a Rh-biphephos complex dissolved in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C
2
C
1
Im][NTf
2
] and immobilized on a mesoporous silicon carbide monolith. The resulting monolith is catalytically active and selective towards linear aldehyde formation, but the accumulation of aldehyde products and high boilers in the ionic liquid leads to slow catalyst deactivation. This accumulation is suppressed when bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate is used as alternative solvent, where only marginal aldehyde accumulation and aldol formation occur. A polydimethylsiloxane (PDMS) membrane coating of the monolith increases the aldehyde-alkene ratio by an enrichment factor of 2.2 in the permeate gas compared to the retentate gas from the reactor simplifying further downstream processing. The monolithic membrane reactor loaded with SILP or SLP catalysts presents a scalable, versatile platform to achieve process intensification for diverse hydroformylation reactions as well as related gas-phase reactions.
The development of a supported liquid phase (SLP) gas-phase hydroformylation catalyst combined with a monolithic membrane separation layer is reported.</description><subject>Accumulation</subject><subject>Aldehydes</subject><subject>Boilers</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical industry</subject><subject>Deactivation</subject><subject>Energy consumption</subject><subject>Green chemistry</subject><subject>Ionic liquids</subject><subject>Liquid phases</subject><subject>Membrane reactors</subject><subject>Membranes</subject><subject>Monolithic materials</subject><subject>Polydimethylsiloxane</subject><subject>Process intensification</subject><subject>Reactors</subject><subject>Silicon carbide</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLwzAYhoMoOKcX70LAiwrVJF_TNEfpdAoDBfVc0jTdOtqmS9JD_73VyTx97wcP7wsPQpeU3FMC8qEka01onEJ5hGY0TiCSTJDjQ07YKTrzfksIpSKJZ8hltgt1N9jB47XyUb9R3uDNWDpbWdeOjQq17bCtcDGEiEamM7jusMKtaQunps8ZpYN1uBixH_reumBK3NS7oS7_2m4-Vu-3WKugmtHX_hydVKrx5uLvztHX89Nn9hKt3pav2eMq0kDTECnBiagKRktIdKxVomQBTBVUg9ZGSm4kF1zLGLgGpolgRhjgLCkrmYLUMEfX-97e2d1gfMi3dnDdNJmzGFIuEp7CRN3tKe2s985Uee_qVrkxpyT_cZovyDL7dbqY4Ks97Lw-cP_O4Ruo13Ps</recordid><startdate>20200907</startdate><enddate>20200907</enddate><creator>Logemann, Morten</creator><creator>Marinkovic, Jakob Maximilian</creator><creator>Schörner, Markus</creator><creator>José García-Suárez, Eduardo</creator><creator>Hecht, Corinna</creator><creator>Franke, Robert</creator><creator>Wessling, Matthias</creator><creator>Riisager, Anders</creator><creator>Fehrmann, Rasmus</creator><creator>Haumann, Marco</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7874-5315</orcidid><orcidid>https://orcid.org/0000-0001-5309-3050</orcidid><orcidid>https://orcid.org/0000-0002-0630-5679</orcidid><orcidid>https://orcid.org/0000-0002-7086-1143</orcidid><orcidid>https://orcid.org/0000-0002-3896-365X</orcidid></search><sort><creationdate>20200907</creationdate><title>Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis</title><author>Logemann, Morten ; Marinkovic, Jakob Maximilian ; Schörner, Markus ; José García-Suárez, Eduardo ; Hecht, Corinna ; Franke, Robert ; Wessling, Matthias ; Riisager, Anders ; Fehrmann, Rasmus ; Haumann, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-a7507fb21d36c4ca6a9b32ab1c3cce995e9575c9435c32c072e7e3526df9839c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Aldehydes</topic><topic>Boilers</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical industry</topic><topic>Deactivation</topic><topic>Energy consumption</topic><topic>Green chemistry</topic><topic>Ionic liquids</topic><topic>Liquid phases</topic><topic>Membrane reactors</topic><topic>Membranes</topic><topic>Monolithic materials</topic><topic>Polydimethylsiloxane</topic><topic>Process intensification</topic><topic>Reactors</topic><topic>Silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logemann, Morten</creatorcontrib><creatorcontrib>Marinkovic, Jakob Maximilian</creatorcontrib><creatorcontrib>Schörner, Markus</creatorcontrib><creatorcontrib>José García-Suárez, Eduardo</creatorcontrib><creatorcontrib>Hecht, Corinna</creatorcontrib><creatorcontrib>Franke, Robert</creatorcontrib><creatorcontrib>Wessling, Matthias</creatorcontrib><creatorcontrib>Riisager, Anders</creatorcontrib><creatorcontrib>Fehrmann, Rasmus</creatorcontrib><creatorcontrib>Haumann, Marco</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logemann, Morten</au><au>Marinkovic, Jakob Maximilian</au><au>Schörner, Markus</au><au>José García-Suárez, Eduardo</au><au>Hecht, Corinna</au><au>Franke, Robert</au><au>Wessling, Matthias</au><au>Riisager, Anders</au><au>Fehrmann, Rasmus</au><au>Haumann, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2020-09-07</date><risdate>2020</risdate><volume>22</volume><issue>17</issue><spage>5691</spage><epage>57</epage><pages>5691-57</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Process intensification is a cornerstone to achieve a significant reduction in energy consumption and CO
2
emissions in the chemical industry. In this context, a monolithic membrane reactor combining homogeneous catalytic gas-phase hydroformylation of but-1-ene with
in situ
product removal is here presented. The homogeneous supported ionic liquid-phase (SILP) catalyst consists of a Rh-biphephos complex dissolved in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C
2
C
1
Im][NTf
2
] and immobilized on a mesoporous silicon carbide monolith. The resulting monolith is catalytically active and selective towards linear aldehyde formation, but the accumulation of aldehyde products and high boilers in the ionic liquid leads to slow catalyst deactivation. This accumulation is suppressed when bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate is used as alternative solvent, where only marginal aldehyde accumulation and aldol formation occur. A polydimethylsiloxane (PDMS) membrane coating of the monolith increases the aldehyde-alkene ratio by an enrichment factor of 2.2 in the permeate gas compared to the retentate gas from the reactor simplifying further downstream processing. The monolithic membrane reactor loaded with SILP or SLP catalysts presents a scalable, versatile platform to achieve process intensification for diverse hydroformylation reactions as well as related gas-phase reactions.
The development of a supported liquid phase (SLP) gas-phase hydroformylation catalyst combined with a monolithic membrane separation layer is reported.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0gc01483d</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7874-5315</orcidid><orcidid>https://orcid.org/0000-0001-5309-3050</orcidid><orcidid>https://orcid.org/0000-0002-0630-5679</orcidid><orcidid>https://orcid.org/0000-0002-7086-1143</orcidid><orcidid>https://orcid.org/0000-0002-3896-365X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2020-09, Vol.22 (17), p.5691-57 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0GC01483D |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Accumulation Aldehydes Boilers Carbon dioxide Carbon dioxide emissions Catalysis Catalysts Chemical industry Deactivation Energy consumption Green chemistry Ionic liquids Liquid phases Membrane reactors Membranes Monolithic materials Polydimethylsiloxane Process intensification Reactors Silicon carbide |
title | Continuous gas-phase hydroformylation of but-1-ene in a membrane reactor by supported liquid-phase (SLP) catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A33%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20gas-phase%20hydroformylation%20of%20but-1-ene%20in%20a%20membrane%20reactor%20by%20supported%20liquid-phase%20(SLP)%20catalysis&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Logemann,%20Morten&rft.date=2020-09-07&rft.volume=22&rft.issue=17&rft.spage=5691&rft.epage=57&rft.pages=5691-57&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d0gc01483d&rft_dat=%3Cproquest_cross%3E2438576583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438576583&rft_id=info:pmid/&rfr_iscdi=true |