Hydrodeoxygenation of vegetable oils over biochar supported bimetallic carbides for producing renewable diesel under mild conditions

Bimetallic Mo-W carbides supported on biochar were synthesized and used in the catalytic hydrotreatment of canola oil at 250 °C to produce diesel-range hydrocarbons. The effects of carburization temperature and metal content on the nature of active sites were investigated by using X-ray diffraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2020-10, Vol.22 (19), p.6424-6436
Hauptverfasser: Tran, Chi-Cong, Akmach, Dahi, Kaliaguine, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6436
container_issue 19
container_start_page 6424
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 22
creator Tran, Chi-Cong
Akmach, Dahi
Kaliaguine, Serge
description Bimetallic Mo-W carbides supported on biochar were synthesized and used in the catalytic hydrotreatment of canola oil at 250 °C to produce diesel-range hydrocarbons. The effects of carburization temperature and metal content on the nature of active sites were investigated by using X-ray diffraction (XRD), N 2 physisorption, X-ray photoelectron spectroscopy (XPS), and CO and H 2 chemisorption. Varying temperature over the range of 550-700 °C did not have any effect on the formation of the Mo 2 C phase in the bimetallic carbide. As for the tungsten component in the mixed carbide, formation of the WC phase at a high temperature of 700 °C was dominant and increased the density of hydrogen activating sites, whereas at lower temperatures (≤600 °C), W 2 C and metallic W phases were formed and showed more CO adsorption sites. Increasing metal loading enhanced the particle size resulting in a lower density of catalytically active sites. The addition of W into the molybdenum carbide system strongly increased the catalytic performance with >95% conversion and >76% hydrocarbon yield over all mixed metal carbides at a mild temperature of 250 °C. These values were both higher than those obtained using Mo 2 C/C and Ru/Al 2 O 3 (48 and 35% hydrocarbon yield, respectively) under identical conditions. All carbide catalysts favor hydrodeoxygenation (HDO) products over decarboxylation/decarbonylation (DCO) products; however, W addition into mixed metal carbides increases the DCO selectivity in comparison with Mo 2 C/C due to higher ratios of H 2 /CO adsorption sites. The bimetallic carbides still retained a high catalyst activity after regeneration. Conversion and product selectivity of canola oil HDO over various metal carbides under mild condition, T = 250 °C, p = 450 psig, WHSV = 5 h −1 , TOS = 2-3 h.
doi_str_mv 10.1039/d0gc00680g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0GC00680G</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448246178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-ca54599989fa6868ab941030ac940ee9b404b5e148c8b0e56498e73e8efd0a563</originalsourceid><addsrcrecordid>eNp9kTFPwzAQhS0EEqWwsCMZsSEV7MRx7BEVaJEqscAcOfYluErjYCeF7vxw3BbBxnSn06f37t4hdE7JDSWpvDWk1oRwQeoDNKKMpxOZ5OTwt-fJMToJYUkIpTlnI_Q13xjvDLjPTQ2t6q1rsavwGmroVdkAdrYJ2K3B49I6_aY8DkPXOd-DiZNVpJrGaqyVL62BgCvncRcVB23bGnto4WOnYywEaPDQmii1so3B2rXGbg3DKTqqVBPg7KeO0evjw8t0Plk8z56md4uJTnLWT7TKWCalFLJSXHChSsni1URpyQiALBlhZQaUCS1KAhlnUkCegoDKEJXxdIyu9rpxwfcBQl8s3eDbaFkkjImEcZqLSF3vKe1dCB6qovN2pfymoKTYplzck9l0l_Iswpd72Af9y_19oehMFZmL_5j0G5o3h6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448246178</pqid></control><display><type>article</type><title>Hydrodeoxygenation of vegetable oils over biochar supported bimetallic carbides for producing renewable diesel under mild conditions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Tran, Chi-Cong ; Akmach, Dahi ; Kaliaguine, Serge</creator><creatorcontrib>Tran, Chi-Cong ; Akmach, Dahi ; Kaliaguine, Serge</creatorcontrib><description>Bimetallic Mo-W carbides supported on biochar were synthesized and used in the catalytic hydrotreatment of canola oil at 250 °C to produce diesel-range hydrocarbons. The effects of carburization temperature and metal content on the nature of active sites were investigated by using X-ray diffraction (XRD), N 2 physisorption, X-ray photoelectron spectroscopy (XPS), and CO and H 2 chemisorption. Varying temperature over the range of 550-700 °C did not have any effect on the formation of the Mo 2 C phase in the bimetallic carbide. As for the tungsten component in the mixed carbide, formation of the WC phase at a high temperature of 700 °C was dominant and increased the density of hydrogen activating sites, whereas at lower temperatures (≤600 °C), W 2 C and metallic W phases were formed and showed more CO adsorption sites. Increasing metal loading enhanced the particle size resulting in a lower density of catalytically active sites. The addition of W into the molybdenum carbide system strongly increased the catalytic performance with &gt;95% conversion and &gt;76% hydrocarbon yield over all mixed metal carbides at a mild temperature of 250 °C. These values were both higher than those obtained using Mo 2 C/C and Ru/Al 2 O 3 (48 and 35% hydrocarbon yield, respectively) under identical conditions. All carbide catalysts favor hydrodeoxygenation (HDO) products over decarboxylation/decarbonylation (DCO) products; however, W addition into mixed metal carbides increases the DCO selectivity in comparison with Mo 2 C/C due to higher ratios of H 2 /CO adsorption sites. The bimetallic carbides still retained a high catalyst activity after regeneration. Conversion and product selectivity of canola oil HDO over various metal carbides under mild condition, T = 250 °C, p = 450 psig, WHSV = 5 h −1 , TOS = 2-3 h.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d0gc00680g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Aluminum oxide ; Bimetals ; Canola oil ; Carbon monoxide ; Carburization (corrosion) ; Carburizing ; Catalysts ; Catalytic converters ; Charcoal ; Chemical synthesis ; Chemisorption ; Decarboxylation ; Density ; Diesel ; Green chemistry ; High temperature ; Hydrocarbons ; Metal carbides ; Metals ; Molybdenum ; Molybdenum carbide ; Photoelectron spectroscopy ; Photoelectrons ; Regeneration ; Selectivity ; Temperature ; Tungsten ; Tungsten carbide ; Vegetable oils ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2020-10, Vol.22 (19), p.6424-6436</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-ca54599989fa6868ab941030ac940ee9b404b5e148c8b0e56498e73e8efd0a563</citedby><cites>FETCH-LOGICAL-c274t-ca54599989fa6868ab941030ac940ee9b404b5e148c8b0e56498e73e8efd0a563</cites><orcidid>0000-0002-4467-2840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tran, Chi-Cong</creatorcontrib><creatorcontrib>Akmach, Dahi</creatorcontrib><creatorcontrib>Kaliaguine, Serge</creatorcontrib><title>Hydrodeoxygenation of vegetable oils over biochar supported bimetallic carbides for producing renewable diesel under mild conditions</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Bimetallic Mo-W carbides supported on biochar were synthesized and used in the catalytic hydrotreatment of canola oil at 250 °C to produce diesel-range hydrocarbons. The effects of carburization temperature and metal content on the nature of active sites were investigated by using X-ray diffraction (XRD), N 2 physisorption, X-ray photoelectron spectroscopy (XPS), and CO and H 2 chemisorption. Varying temperature over the range of 550-700 °C did not have any effect on the formation of the Mo 2 C phase in the bimetallic carbide. As for the tungsten component in the mixed carbide, formation of the WC phase at a high temperature of 700 °C was dominant and increased the density of hydrogen activating sites, whereas at lower temperatures (≤600 °C), W 2 C and metallic W phases were formed and showed more CO adsorption sites. Increasing metal loading enhanced the particle size resulting in a lower density of catalytically active sites. The addition of W into the molybdenum carbide system strongly increased the catalytic performance with &gt;95% conversion and &gt;76% hydrocarbon yield over all mixed metal carbides at a mild temperature of 250 °C. These values were both higher than those obtained using Mo 2 C/C and Ru/Al 2 O 3 (48 and 35% hydrocarbon yield, respectively) under identical conditions. All carbide catalysts favor hydrodeoxygenation (HDO) products over decarboxylation/decarbonylation (DCO) products; however, W addition into mixed metal carbides increases the DCO selectivity in comparison with Mo 2 C/C due to higher ratios of H 2 /CO adsorption sites. The bimetallic carbides still retained a high catalyst activity after regeneration. Conversion and product selectivity of canola oil HDO over various metal carbides under mild condition, T = 250 °C, p = 450 psig, WHSV = 5 h −1 , TOS = 2-3 h.</description><subject>Adsorption</subject><subject>Aluminum oxide</subject><subject>Bimetals</subject><subject>Canola oil</subject><subject>Carbon monoxide</subject><subject>Carburization (corrosion)</subject><subject>Carburizing</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Charcoal</subject><subject>Chemical synthesis</subject><subject>Chemisorption</subject><subject>Decarboxylation</subject><subject>Density</subject><subject>Diesel</subject><subject>Green chemistry</subject><subject>High temperature</subject><subject>Hydrocarbons</subject><subject>Metal carbides</subject><subject>Metals</subject><subject>Molybdenum</subject><subject>Molybdenum carbide</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Regeneration</subject><subject>Selectivity</subject><subject>Temperature</subject><subject>Tungsten</subject><subject>Tungsten carbide</subject><subject>Vegetable oils</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kTFPwzAQhS0EEqWwsCMZsSEV7MRx7BEVaJEqscAcOfYluErjYCeF7vxw3BbBxnSn06f37t4hdE7JDSWpvDWk1oRwQeoDNKKMpxOZ5OTwt-fJMToJYUkIpTlnI_Q13xjvDLjPTQ2t6q1rsavwGmroVdkAdrYJ2K3B49I6_aY8DkPXOd-DiZNVpJrGaqyVL62BgCvncRcVB23bGnto4WOnYywEaPDQmii1so3B2rXGbg3DKTqqVBPg7KeO0evjw8t0Plk8z56md4uJTnLWT7TKWCalFLJSXHChSsni1URpyQiALBlhZQaUCS1KAhlnUkCegoDKEJXxdIyu9rpxwfcBQl8s3eDbaFkkjImEcZqLSF3vKe1dCB6qovN2pfymoKTYplzck9l0l_Iswpd72Af9y_19oehMFZmL_5j0G5o3h6U</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Tran, Chi-Cong</creator><creator>Akmach, Dahi</creator><creator>Kaliaguine, Serge</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4467-2840</orcidid></search><sort><creationdate>20201005</creationdate><title>Hydrodeoxygenation of vegetable oils over biochar supported bimetallic carbides for producing renewable diesel under mild conditions</title><author>Tran, Chi-Cong ; Akmach, Dahi ; Kaliaguine, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-ca54599989fa6868ab941030ac940ee9b404b5e148c8b0e56498e73e8efd0a563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Aluminum oxide</topic><topic>Bimetals</topic><topic>Canola oil</topic><topic>Carbon monoxide</topic><topic>Carburization (corrosion)</topic><topic>Carburizing</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Charcoal</topic><topic>Chemical synthesis</topic><topic>Chemisorption</topic><topic>Decarboxylation</topic><topic>Density</topic><topic>Diesel</topic><topic>Green chemistry</topic><topic>High temperature</topic><topic>Hydrocarbons</topic><topic>Metal carbides</topic><topic>Metals</topic><topic>Molybdenum</topic><topic>Molybdenum carbide</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Regeneration</topic><topic>Selectivity</topic><topic>Temperature</topic><topic>Tungsten</topic><topic>Tungsten carbide</topic><topic>Vegetable oils</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Chi-Cong</creatorcontrib><creatorcontrib>Akmach, Dahi</creatorcontrib><creatorcontrib>Kaliaguine, Serge</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Chi-Cong</au><au>Akmach, Dahi</au><au>Kaliaguine, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodeoxygenation of vegetable oils over biochar supported bimetallic carbides for producing renewable diesel under mild conditions</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2020-10-05</date><risdate>2020</risdate><volume>22</volume><issue>19</issue><spage>6424</spage><epage>6436</epage><pages>6424-6436</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Bimetallic Mo-W carbides supported on biochar were synthesized and used in the catalytic hydrotreatment of canola oil at 250 °C to produce diesel-range hydrocarbons. The effects of carburization temperature and metal content on the nature of active sites were investigated by using X-ray diffraction (XRD), N 2 physisorption, X-ray photoelectron spectroscopy (XPS), and CO and H 2 chemisorption. Varying temperature over the range of 550-700 °C did not have any effect on the formation of the Mo 2 C phase in the bimetallic carbide. As for the tungsten component in the mixed carbide, formation of the WC phase at a high temperature of 700 °C was dominant and increased the density of hydrogen activating sites, whereas at lower temperatures (≤600 °C), W 2 C and metallic W phases were formed and showed more CO adsorption sites. Increasing metal loading enhanced the particle size resulting in a lower density of catalytically active sites. The addition of W into the molybdenum carbide system strongly increased the catalytic performance with &gt;95% conversion and &gt;76% hydrocarbon yield over all mixed metal carbides at a mild temperature of 250 °C. These values were both higher than those obtained using Mo 2 C/C and Ru/Al 2 O 3 (48 and 35% hydrocarbon yield, respectively) under identical conditions. All carbide catalysts favor hydrodeoxygenation (HDO) products over decarboxylation/decarbonylation (DCO) products; however, W addition into mixed metal carbides increases the DCO selectivity in comparison with Mo 2 C/C due to higher ratios of H 2 /CO adsorption sites. The bimetallic carbides still retained a high catalyst activity after regeneration. Conversion and product selectivity of canola oil HDO over various metal carbides under mild condition, T = 250 °C, p = 450 psig, WHSV = 5 h −1 , TOS = 2-3 h.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0gc00680g</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4467-2840</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2020-10, Vol.22 (19), p.6424-6436
issn 1463-9262
1463-9270
language eng
recordid cdi_crossref_primary_10_1039_D0GC00680G
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Adsorption
Aluminum oxide
Bimetals
Canola oil
Carbon monoxide
Carburization (corrosion)
Carburizing
Catalysts
Catalytic converters
Charcoal
Chemical synthesis
Chemisorption
Decarboxylation
Density
Diesel
Green chemistry
High temperature
Hydrocarbons
Metal carbides
Metals
Molybdenum
Molybdenum carbide
Photoelectron spectroscopy
Photoelectrons
Regeneration
Selectivity
Temperature
Tungsten
Tungsten carbide
Vegetable oils
X ray photoelectron spectroscopy
X-ray diffraction
title Hydrodeoxygenation of vegetable oils over biochar supported bimetallic carbides for producing renewable diesel under mild conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodeoxygenation%20of%20vegetable%20oils%20over%20biochar%20supported%20bimetallic%20carbides%20for%20producing%20renewable%20diesel%20under%20mild%20conditions&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Tran,%20Chi-Cong&rft.date=2020-10-05&rft.volume=22&rft.issue=19&rft.spage=6424&rft.epage=6436&rft.pages=6424-6436&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d0gc00680g&rft_dat=%3Cproquest_cross%3E2448246178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448246178&rft_id=info:pmid/&rfr_iscdi=true