Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction

Introducing transition-metal oxides as co-catalysts into classical Fenton chemistry holds great promise for improving the recycling of iron species. However, the underlying chemistry that controls the generation and transformation of ferryl species (Fe IV ) during such heterogeneous Fenton reactions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science. Nano 2021-04, Vol.8 (4), p.978-985
Hauptverfasser: Yu, Yaqin, Chen, Haoze, Yan, Li, Jing, Chuanyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 985
container_issue 4
container_start_page 978
container_title Environmental science. Nano
container_volume 8
creator Yu, Yaqin
Chen, Haoze
Yan, Li
Jing, Chuanyong
description Introducing transition-metal oxides as co-catalysts into classical Fenton chemistry holds great promise for improving the recycling of iron species. However, the underlying chemistry that controls the generation and transformation of ferryl species (Fe IV ) during such heterogeneous Fenton reactions is not fully understood. Herein, we modulated oxygen-vacancy-enriched WO 3− x and identified surface Fe IV species using in situ spectroscopy and density functional theory calculations. Direct spectroscopic evidence shows that WO 3− x caused the reaction of Fe II with H 2 O 2 to switch from the formation of Fe III complexes towards direct generation of Fe IV . Fe IV intermediates oxidize H 2 O 2 to &z.rad;O 2 − / 1 O 2 , accompanied by the production of Fe III . Fe III is reduced to Fe II by the electrons localized in the t 2g orbitals of WO 3− x , stimulating the generation of &z.rad;OH. This study opens a new chapter in the mechanistic understanding of Fe IV formation and extends the development of co-catalysts via surface engineering in remediation techniques. WO 3− x switched the reaction of Fe II with H 2 O 2 from the formation of Fe III towards the direct generation of Fe IV . Fe IV was reduced to Fe III /Fe II by electrons localized in the t 2g orbitals of WO 3− x , which favored the generation of &z.rad;O 2 − , &z.rad;OH, and 1 O 2 .
doi_str_mv 10.1039/d0en01213k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0EN01213K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516149701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-5cf58deb6fe86307c0834631d31221e18cc671cff9b444f69f67d2987e591c233</originalsourceid><addsrcrecordid>eNpF0EFLwzAUwPEgCo65i3ch4EWFaV7Spq03mZuKw130XLr0Zcvckpm0Yr-90ck8vXf48R78CTkFdg1MFDc1Q8uAg3g_ID3OUhjmIOFwv6fimAxCWDHGAHgqZNYj1eyrW6Cln5WqrOroxtXtumqwpsY26HWlkKolbkxofHdLTY22MbozdkGNd_biMjq6xEhdPIOuDXQSibPUY6Ua4-wJOdLVOuDgb_bJ22T8OnocTmcPT6O76VCJJGuGqdJpXuNcasylYJliuUikgFoA54CQKyUzUFoX8yRJtCy0zGpe5BmmBSguRJ-c7-5uvftoMTTlyrXexpclT2OHpMgYRHW1U8q7EDzqcuvNpvJdCaz8qVjes_HLb8XniM922Ae1d_-VxTdheG61</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516149701</pqid></control><display><type>article</type><title>Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yu, Yaqin ; Chen, Haoze ; Yan, Li ; Jing, Chuanyong</creator><creatorcontrib>Yu, Yaqin ; Chen, Haoze ; Yan, Li ; Jing, Chuanyong</creatorcontrib><description>Introducing transition-metal oxides as co-catalysts into classical Fenton chemistry holds great promise for improving the recycling of iron species. However, the underlying chemistry that controls the generation and transformation of ferryl species (Fe IV ) during such heterogeneous Fenton reactions is not fully understood. Herein, we modulated oxygen-vacancy-enriched WO 3− x and identified surface Fe IV species using in situ spectroscopy and density functional theory calculations. Direct spectroscopic evidence shows that WO 3− x caused the reaction of Fe II with H 2 O 2 to switch from the formation of Fe III complexes towards direct generation of Fe IV . Fe IV intermediates oxidize H 2 O 2 to &amp;z.rad;O 2 − / 1 O 2 , accompanied by the production of Fe III . Fe III is reduced to Fe II by the electrons localized in the t 2g orbitals of WO 3− x , stimulating the generation of &amp;z.rad;OH. This study opens a new chapter in the mechanistic understanding of Fe IV formation and extends the development of co-catalysts via surface engineering in remediation techniques. WO 3− x switched the reaction of Fe II with H 2 O 2 from the formation of Fe III towards the direct generation of Fe IV . Fe IV was reduced to Fe III /Fe II by electrons localized in the t 2g orbitals of WO 3− x , which favored the generation of &amp;z.rad;O 2 − , &amp;z.rad;OH, and 1 O 2 .</description><identifier>ISSN: 2051-8153</identifier><identifier>EISSN: 2051-8161</identifier><identifier>DOI: 10.1039/d0en01213k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Analytical methods ; Catalysts ; Chemistry ; Density functional theory ; Heavy metals ; Hydrogen peroxide ; Intermediates ; Iron ; Oxides ; Oxygen ; Oxygen enrichment ; Species ; Spectroscopy ; Transition metal oxides ; Tungsten oxides ; Vacancies</subject><ispartof>Environmental science. Nano, 2021-04, Vol.8 (4), p.978-985</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-5cf58deb6fe86307c0834631d31221e18cc671cff9b444f69f67d2987e591c233</citedby><cites>FETCH-LOGICAL-c347t-5cf58deb6fe86307c0834631d31221e18cc671cff9b444f69f67d2987e591c233</cites><orcidid>0000-0002-4475-7027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yu, Yaqin</creatorcontrib><creatorcontrib>Chen, Haoze</creatorcontrib><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Jing, Chuanyong</creatorcontrib><title>Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction</title><title>Environmental science. Nano</title><description>Introducing transition-metal oxides as co-catalysts into classical Fenton chemistry holds great promise for improving the recycling of iron species. However, the underlying chemistry that controls the generation and transformation of ferryl species (Fe IV ) during such heterogeneous Fenton reactions is not fully understood. Herein, we modulated oxygen-vacancy-enriched WO 3− x and identified surface Fe IV species using in situ spectroscopy and density functional theory calculations. Direct spectroscopic evidence shows that WO 3− x caused the reaction of Fe II with H 2 O 2 to switch from the formation of Fe III complexes towards direct generation of Fe IV . Fe IV intermediates oxidize H 2 O 2 to &amp;z.rad;O 2 − / 1 O 2 , accompanied by the production of Fe III . Fe III is reduced to Fe II by the electrons localized in the t 2g orbitals of WO 3− x , stimulating the generation of &amp;z.rad;OH. This study opens a new chapter in the mechanistic understanding of Fe IV formation and extends the development of co-catalysts via surface engineering in remediation techniques. WO 3− x switched the reaction of Fe II with H 2 O 2 from the formation of Fe III towards the direct generation of Fe IV . Fe IV was reduced to Fe III /Fe II by electrons localized in the t 2g orbitals of WO 3− x , which favored the generation of &amp;z.rad;O 2 − , &amp;z.rad;OH, and 1 O 2 .</description><subject>Analytical methods</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Density functional theory</subject><subject>Heavy metals</subject><subject>Hydrogen peroxide</subject><subject>Intermediates</subject><subject>Iron</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Oxygen enrichment</subject><subject>Species</subject><subject>Spectroscopy</subject><subject>Transition metal oxides</subject><subject>Tungsten oxides</subject><subject>Vacancies</subject><issn>2051-8153</issn><issn>2051-8161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpF0EFLwzAUwPEgCo65i3ch4EWFaV7Spq03mZuKw130XLr0Zcvckpm0Yr-90ck8vXf48R78CTkFdg1MFDc1Q8uAg3g_ID3OUhjmIOFwv6fimAxCWDHGAHgqZNYj1eyrW6Cln5WqrOroxtXtumqwpsY26HWlkKolbkxofHdLTY22MbozdkGNd_biMjq6xEhdPIOuDXQSibPUY6Ua4-wJOdLVOuDgb_bJ22T8OnocTmcPT6O76VCJJGuGqdJpXuNcasylYJliuUikgFoA54CQKyUzUFoX8yRJtCy0zGpe5BmmBSguRJ-c7-5uvftoMTTlyrXexpclT2OHpMgYRHW1U8q7EDzqcuvNpvJdCaz8qVjes_HLb8XniM922Ae1d_-VxTdheG61</recordid><startdate>20210422</startdate><enddate>20210422</enddate><creator>Yu, Yaqin</creator><creator>Chen, Haoze</creator><creator>Yan, Li</creator><creator>Jing, Chuanyong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4475-7027</orcidid></search><sort><creationdate>20210422</creationdate><title>Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction</title><author>Yu, Yaqin ; Chen, Haoze ; Yan, Li ; Jing, Chuanyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-5cf58deb6fe86307c0834631d31221e18cc671cff9b444f69f67d2987e591c233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical methods</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Density functional theory</topic><topic>Heavy metals</topic><topic>Hydrogen peroxide</topic><topic>Intermediates</topic><topic>Iron</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Oxygen enrichment</topic><topic>Species</topic><topic>Spectroscopy</topic><topic>Transition metal oxides</topic><topic>Tungsten oxides</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yaqin</creatorcontrib><creatorcontrib>Chen, Haoze</creatorcontrib><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Jing, Chuanyong</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science. Nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yaqin</au><au>Chen, Haoze</au><au>Yan, Li</au><au>Jing, Chuanyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction</atitle><jtitle>Environmental science. Nano</jtitle><date>2021-04-22</date><risdate>2021</risdate><volume>8</volume><issue>4</issue><spage>978</spage><epage>985</epage><pages>978-985</pages><issn>2051-8153</issn><eissn>2051-8161</eissn><abstract>Introducing transition-metal oxides as co-catalysts into classical Fenton chemistry holds great promise for improving the recycling of iron species. However, the underlying chemistry that controls the generation and transformation of ferryl species (Fe IV ) during such heterogeneous Fenton reactions is not fully understood. Herein, we modulated oxygen-vacancy-enriched WO 3− x and identified surface Fe IV species using in situ spectroscopy and density functional theory calculations. Direct spectroscopic evidence shows that WO 3− x caused the reaction of Fe II with H 2 O 2 to switch from the formation of Fe III complexes towards direct generation of Fe IV . Fe IV intermediates oxidize H 2 O 2 to &amp;z.rad;O 2 − / 1 O 2 , accompanied by the production of Fe III . Fe III is reduced to Fe II by the electrons localized in the t 2g orbitals of WO 3− x , stimulating the generation of &amp;z.rad;OH. This study opens a new chapter in the mechanistic understanding of Fe IV formation and extends the development of co-catalysts via surface engineering in remediation techniques. WO 3− x switched the reaction of Fe II with H 2 O 2 from the formation of Fe III towards the direct generation of Fe IV . Fe IV was reduced to Fe III /Fe II by electrons localized in the t 2g orbitals of WO 3− x , which favored the generation of &amp;z.rad;O 2 − , &amp;z.rad;OH, and 1 O 2 .</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0en01213k</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4475-7027</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2051-8153
ispartof Environmental science. Nano, 2021-04, Vol.8 (4), p.978-985
issn 2051-8153
2051-8161
language eng
recordid cdi_crossref_primary_10_1039_D0EN01213K
source Royal Society Of Chemistry Journals 2008-
subjects Analytical methods
Catalysts
Chemistry
Density functional theory
Heavy metals
Hydrogen peroxide
Intermediates
Iron
Oxides
Oxygen
Oxygen enrichment
Species
Spectroscopy
Transition metal oxides
Tungsten oxides
Vacancies
title Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20vacancy%20modulated%20interface%20chemistry:%20identifying%20iron()%20in%20heterogeneous%20Fenton%20reaction&rft.jtitle=Environmental%20science.%20Nano&rft.au=Yu,%20Yaqin&rft.date=2021-04-22&rft.volume=8&rft.issue=4&rft.spage=978&rft.epage=985&rft.pages=978-985&rft.issn=2051-8153&rft.eissn=2051-8161&rft_id=info:doi/10.1039/d0en01213k&rft_dat=%3Cproquest_cross%3E2516149701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516149701&rft_id=info:pmid/&rfr_iscdi=true