Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction
Introducing transition-metal oxides as co-catalysts into classical Fenton chemistry holds great promise for improving the recycling of iron species. However, the underlying chemistry that controls the generation and transformation of ferryl species (Fe IV ) during such heterogeneous Fenton reactions...
Gespeichert in:
Veröffentlicht in: | Environmental science. Nano 2021-04, Vol.8 (4), p.978-985 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 985 |
---|---|
container_issue | 4 |
container_start_page | 978 |
container_title | Environmental science. Nano |
container_volume | 8 |
creator | Yu, Yaqin Chen, Haoze Yan, Li Jing, Chuanyong |
description | Introducing transition-metal oxides as co-catalysts into classical Fenton chemistry holds great promise for improving the recycling of iron species. However, the underlying chemistry that controls the generation and transformation of ferryl species (Fe
IV
) during such heterogeneous Fenton reactions is not fully understood. Herein, we modulated oxygen-vacancy-enriched WO
3−
x
and identified surface Fe
IV
species using
in situ
spectroscopy and density functional theory calculations. Direct spectroscopic evidence shows that WO
3−
x
caused the reaction of Fe
II
with H
2
O
2
to switch from the formation of Fe
III
complexes towards direct generation of Fe
IV
. Fe
IV
intermediates oxidize H
2
O
2
to &z.rad;O
2
−
/
1
O
2
, accompanied by the production of Fe
III
. Fe
III
is reduced to Fe
II
by the electrons localized in the t
2g
orbitals of WO
3−
x
, stimulating the generation of &z.rad;OH. This study opens a new chapter in the mechanistic understanding of Fe
IV
formation and extends the development of co-catalysts
via
surface engineering in remediation techniques.
WO
3−
x
switched the reaction of Fe
II
with H
2
O
2
from the formation of Fe
III
towards the direct generation of Fe
IV
. Fe
IV
was reduced to Fe
III
/Fe
II
by electrons localized in the t
2g
orbitals of WO
3−
x
, which favored the generation of &z.rad;O
2
−
, &z.rad;OH, and
1
O
2
. |
doi_str_mv | 10.1039/d0en01213k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0EN01213K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516149701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-5cf58deb6fe86307c0834631d31221e18cc671cff9b444f69f67d2987e591c233</originalsourceid><addsrcrecordid>eNpF0EFLwzAUwPEgCo65i3ch4EWFaV7Spq03mZuKw130XLr0Zcvckpm0Yr-90ck8vXf48R78CTkFdg1MFDc1Q8uAg3g_ID3OUhjmIOFwv6fimAxCWDHGAHgqZNYj1eyrW6Cln5WqrOroxtXtumqwpsY26HWlkKolbkxofHdLTY22MbozdkGNd_biMjq6xEhdPIOuDXQSibPUY6Ua4-wJOdLVOuDgb_bJ22T8OnocTmcPT6O76VCJJGuGqdJpXuNcasylYJliuUikgFoA54CQKyUzUFoX8yRJtCy0zGpe5BmmBSguRJ-c7-5uvftoMTTlyrXexpclT2OHpMgYRHW1U8q7EDzqcuvNpvJdCaz8qVjes_HLb8XniM922Ae1d_-VxTdheG61</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516149701</pqid></control><display><type>article</type><title>Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yu, Yaqin ; Chen, Haoze ; Yan, Li ; Jing, Chuanyong</creator><creatorcontrib>Yu, Yaqin ; Chen, Haoze ; Yan, Li ; Jing, Chuanyong</creatorcontrib><description>Introducing transition-metal oxides as co-catalysts into classical Fenton chemistry holds great promise for improving the recycling of iron species. However, the underlying chemistry that controls the generation and transformation of ferryl species (Fe
IV
) during such heterogeneous Fenton reactions is not fully understood. Herein, we modulated oxygen-vacancy-enriched WO
3−
x
and identified surface Fe
IV
species using
in situ
spectroscopy and density functional theory calculations. Direct spectroscopic evidence shows that WO
3−
x
caused the reaction of Fe
II
with H
2
O
2
to switch from the formation of Fe
III
complexes towards direct generation of Fe
IV
. Fe
IV
intermediates oxidize H
2
O
2
to &z.rad;O
2
−
/
1
O
2
, accompanied by the production of Fe
III
. Fe
III
is reduced to Fe
II
by the electrons localized in the t
2g
orbitals of WO
3−
x
, stimulating the generation of &z.rad;OH. This study opens a new chapter in the mechanistic understanding of Fe
IV
formation and extends the development of co-catalysts
via
surface engineering in remediation techniques.
WO
3−
x
switched the reaction of Fe
II
with H
2
O
2
from the formation of Fe
III
towards the direct generation of Fe
IV
. Fe
IV
was reduced to Fe
III
/Fe
II
by electrons localized in the t
2g
orbitals of WO
3−
x
, which favored the generation of &z.rad;O
2
−
, &z.rad;OH, and
1
O
2
.</description><identifier>ISSN: 2051-8153</identifier><identifier>EISSN: 2051-8161</identifier><identifier>DOI: 10.1039/d0en01213k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Analytical methods ; Catalysts ; Chemistry ; Density functional theory ; Heavy metals ; Hydrogen peroxide ; Intermediates ; Iron ; Oxides ; Oxygen ; Oxygen enrichment ; Species ; Spectroscopy ; Transition metal oxides ; Tungsten oxides ; Vacancies</subject><ispartof>Environmental science. Nano, 2021-04, Vol.8 (4), p.978-985</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-5cf58deb6fe86307c0834631d31221e18cc671cff9b444f69f67d2987e591c233</citedby><cites>FETCH-LOGICAL-c347t-5cf58deb6fe86307c0834631d31221e18cc671cff9b444f69f67d2987e591c233</cites><orcidid>0000-0002-4475-7027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yu, Yaqin</creatorcontrib><creatorcontrib>Chen, Haoze</creatorcontrib><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Jing, Chuanyong</creatorcontrib><title>Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction</title><title>Environmental science. Nano</title><description>Introducing transition-metal oxides as co-catalysts into classical Fenton chemistry holds great promise for improving the recycling of iron species. However, the underlying chemistry that controls the generation and transformation of ferryl species (Fe
IV
) during such heterogeneous Fenton reactions is not fully understood. Herein, we modulated oxygen-vacancy-enriched WO
3−
x
and identified surface Fe
IV
species using
in situ
spectroscopy and density functional theory calculations. Direct spectroscopic evidence shows that WO
3−
x
caused the reaction of Fe
II
with H
2
O
2
to switch from the formation of Fe
III
complexes towards direct generation of Fe
IV
. Fe
IV
intermediates oxidize H
2
O
2
to &z.rad;O
2
−
/
1
O
2
, accompanied by the production of Fe
III
. Fe
III
is reduced to Fe
II
by the electrons localized in the t
2g
orbitals of WO
3−
x
, stimulating the generation of &z.rad;OH. This study opens a new chapter in the mechanistic understanding of Fe
IV
formation and extends the development of co-catalysts
via
surface engineering in remediation techniques.
WO
3−
x
switched the reaction of Fe
II
with H
2
O
2
from the formation of Fe
III
towards the direct generation of Fe
IV
. Fe
IV
was reduced to Fe
III
/Fe
II
by electrons localized in the t
2g
orbitals of WO
3−
x
, which favored the generation of &z.rad;O
2
−
, &z.rad;OH, and
1
O
2
.</description><subject>Analytical methods</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Density functional theory</subject><subject>Heavy metals</subject><subject>Hydrogen peroxide</subject><subject>Intermediates</subject><subject>Iron</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>Oxygen enrichment</subject><subject>Species</subject><subject>Spectroscopy</subject><subject>Transition metal oxides</subject><subject>Tungsten oxides</subject><subject>Vacancies</subject><issn>2051-8153</issn><issn>2051-8161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpF0EFLwzAUwPEgCo65i3ch4EWFaV7Spq03mZuKw130XLr0Zcvckpm0Yr-90ck8vXf48R78CTkFdg1MFDc1Q8uAg3g_ID3OUhjmIOFwv6fimAxCWDHGAHgqZNYj1eyrW6Cln5WqrOroxtXtumqwpsY26HWlkKolbkxofHdLTY22MbozdkGNd_biMjq6xEhdPIOuDXQSibPUY6Ua4-wJOdLVOuDgb_bJ22T8OnocTmcPT6O76VCJJGuGqdJpXuNcasylYJliuUikgFoA54CQKyUzUFoX8yRJtCy0zGpe5BmmBSguRJ-c7-5uvftoMTTlyrXexpclT2OHpMgYRHW1U8q7EDzqcuvNpvJdCaz8qVjes_HLb8XniM922Ae1d_-VxTdheG61</recordid><startdate>20210422</startdate><enddate>20210422</enddate><creator>Yu, Yaqin</creator><creator>Chen, Haoze</creator><creator>Yan, Li</creator><creator>Jing, Chuanyong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4475-7027</orcidid></search><sort><creationdate>20210422</creationdate><title>Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction</title><author>Yu, Yaqin ; Chen, Haoze ; Yan, Li ; Jing, Chuanyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-5cf58deb6fe86307c0834631d31221e18cc671cff9b444f69f67d2987e591c233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical methods</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Density functional theory</topic><topic>Heavy metals</topic><topic>Hydrogen peroxide</topic><topic>Intermediates</topic><topic>Iron</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>Oxygen enrichment</topic><topic>Species</topic><topic>Spectroscopy</topic><topic>Transition metal oxides</topic><topic>Tungsten oxides</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yaqin</creatorcontrib><creatorcontrib>Chen, Haoze</creatorcontrib><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Jing, Chuanyong</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science. Nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yaqin</au><au>Chen, Haoze</au><au>Yan, Li</au><au>Jing, Chuanyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction</atitle><jtitle>Environmental science. Nano</jtitle><date>2021-04-22</date><risdate>2021</risdate><volume>8</volume><issue>4</issue><spage>978</spage><epage>985</epage><pages>978-985</pages><issn>2051-8153</issn><eissn>2051-8161</eissn><abstract>Introducing transition-metal oxides as co-catalysts into classical Fenton chemistry holds great promise for improving the recycling of iron species. However, the underlying chemistry that controls the generation and transformation of ferryl species (Fe
IV
) during such heterogeneous Fenton reactions is not fully understood. Herein, we modulated oxygen-vacancy-enriched WO
3−
x
and identified surface Fe
IV
species using
in situ
spectroscopy and density functional theory calculations. Direct spectroscopic evidence shows that WO
3−
x
caused the reaction of Fe
II
with H
2
O
2
to switch from the formation of Fe
III
complexes towards direct generation of Fe
IV
. Fe
IV
intermediates oxidize H
2
O
2
to &z.rad;O
2
−
/
1
O
2
, accompanied by the production of Fe
III
. Fe
III
is reduced to Fe
II
by the electrons localized in the t
2g
orbitals of WO
3−
x
, stimulating the generation of &z.rad;OH. This study opens a new chapter in the mechanistic understanding of Fe
IV
formation and extends the development of co-catalysts
via
surface engineering in remediation techniques.
WO
3−
x
switched the reaction of Fe
II
with H
2
O
2
from the formation of Fe
III
towards the direct generation of Fe
IV
. Fe
IV
was reduced to Fe
III
/Fe
II
by electrons localized in the t
2g
orbitals of WO
3−
x
, which favored the generation of &z.rad;O
2
−
, &z.rad;OH, and
1
O
2
.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0en01213k</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4475-7027</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-8153 |
ispartof | Environmental science. Nano, 2021-04, Vol.8 (4), p.978-985 |
issn | 2051-8153 2051-8161 |
language | eng |
recordid | cdi_crossref_primary_10_1039_D0EN01213K |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Analytical methods Catalysts Chemistry Density functional theory Heavy metals Hydrogen peroxide Intermediates Iron Oxides Oxygen Oxygen enrichment Species Spectroscopy Transition metal oxides Tungsten oxides Vacancies |
title | Oxygen vacancy modulated interface chemistry: identifying iron() in heterogeneous Fenton reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20vacancy%20modulated%20interface%20chemistry:%20identifying%20iron()%20in%20heterogeneous%20Fenton%20reaction&rft.jtitle=Environmental%20science.%20Nano&rft.au=Yu,%20Yaqin&rft.date=2021-04-22&rft.volume=8&rft.issue=4&rft.spage=978&rft.epage=985&rft.pages=978-985&rft.issn=2051-8153&rft.eissn=2051-8161&rft_id=info:doi/10.1039/d0en01213k&rft_dat=%3Cproquest_cross%3E2516149701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516149701&rft_id=info:pmid/&rfr_iscdi=true |