Multicomponent diffusion in atmospheric aerosol particles

Condensed phase mass transport in single aerosol particles is investigated using a linear quadrupole electrodynamic balance (LQ-EDB) and the Maxwell-Stefan (MS) framework. In the LQ-EDB experiments, water loss from model aqueous inorganic-organic aerosol particles composed of water, ammonium sulfate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science: atmospheres 2021-01, Vol.1 (1), p.45-55
Hauptverfasser: Wallace, Brandon J, Price, Chelsea L, Davies, James F, Preston, Thomas C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 45
container_title Environmental science: atmospheres
container_volume 1
creator Wallace, Brandon J
Price, Chelsea L
Davies, James F
Preston, Thomas C
description Condensed phase mass transport in single aerosol particles is investigated using a linear quadrupole electrodynamic balance (LQ-EDB) and the Maxwell-Stefan (MS) framework. In the LQ-EDB experiments, water loss from model aqueous inorganic-organic aerosol particles composed of water, ammonium sulfate (AS) and citric acid (CA) is measured by tracking morphology-dependent resonances that appear in light scattering spectra. Characteristic equilibration times are found to not follow simple mixing rules and can be much longer than those of either aqueous CA or aqueous AS. To understand these observations, we develop a multicomponent (more than two components) model based on the MS diffusion model. Activities in the mixture are calculated using the aerosol inorganic-organic mixtures functional groups activity coefficients (AIOMFAC) thermodynamic model. Fluxes from the MS equation are incorporated into an adaptive finite-volume scheme that we use to numerically solve the mass transport problem in a spherical particle with a moving boundary. The resulting model is applied to the aqueous AS/CA system and is able to provide an accurate quantitative description of measured equilibration times. The longer equilibration times in aqueous AS/CA can be understood to result from thermodynamic nonideality rather than, for instance, a phase change. Condensed phase mass transport in single aerosol particles is investigated using a linear quadrupole electrodynamic balance (LQ-EDB) and the Maxwell-Stefan (MS) framework.
doi_str_mv 10.1039/d0ea00008f
format Article
fullrecord <record><control><sourceid>rsc_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0EA00008F</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d0ea00008f</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-dd639d204f084605e5a1ffc28cb84117ab468573c93bda286253aee3d9b2fa403</originalsourceid><addsrcrecordid>eNpN0E1LxDAQBuAgCi7rXrwLOQvVyWeT47LuqrDiRc8lzQdG2qYk3YP_3uqKOpeZw8Mw7yB0SeCGANO3DryBuVQ4QQsqGa-YBHn6bz5Hq1LeZ0IFobwWC6SfDt0UberHNPhhwi6GcCgxDTgO2Ex9KuObz9Fi43MqqcOjybPvfLlAZ8F0xa9--hK97rYvm4dq_3z_uFnvK0uJnirnJNOOAg-guAThhSEhWKpsqzghtWm5VKJmVrPWGaokFcx4z5xuaTAc2BJdH_fa-YCSfWjGHHuTPxoCzVfu5g626-_cuxlfHXEu9tf9_YV9AhpPVMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multicomponent diffusion in atmospheric aerosol particles</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wallace, Brandon J ; Price, Chelsea L ; Davies, James F ; Preston, Thomas C</creator><creatorcontrib>Wallace, Brandon J ; Price, Chelsea L ; Davies, James F ; Preston, Thomas C</creatorcontrib><description>Condensed phase mass transport in single aerosol particles is investigated using a linear quadrupole electrodynamic balance (LQ-EDB) and the Maxwell-Stefan (MS) framework. In the LQ-EDB experiments, water loss from model aqueous inorganic-organic aerosol particles composed of water, ammonium sulfate (AS) and citric acid (CA) is measured by tracking morphology-dependent resonances that appear in light scattering spectra. Characteristic equilibration times are found to not follow simple mixing rules and can be much longer than those of either aqueous CA or aqueous AS. To understand these observations, we develop a multicomponent (more than two components) model based on the MS diffusion model. Activities in the mixture are calculated using the aerosol inorganic-organic mixtures functional groups activity coefficients (AIOMFAC) thermodynamic model. Fluxes from the MS equation are incorporated into an adaptive finite-volume scheme that we use to numerically solve the mass transport problem in a spherical particle with a moving boundary. The resulting model is applied to the aqueous AS/CA system and is able to provide an accurate quantitative description of measured equilibration times. The longer equilibration times in aqueous AS/CA can be understood to result from thermodynamic nonideality rather than, for instance, a phase change. Condensed phase mass transport in single aerosol particles is investigated using a linear quadrupole electrodynamic balance (LQ-EDB) and the Maxwell-Stefan (MS) framework.</description><identifier>ISSN: 2634-3606</identifier><identifier>EISSN: 2634-3606</identifier><identifier>DOI: 10.1039/d0ea00008f</identifier><language>eng</language><ispartof>Environmental science: atmospheres, 2021-01, Vol.1 (1), p.45-55</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-dd639d204f084605e5a1ffc28cb84117ab468573c93bda286253aee3d9b2fa403</citedby><cites>FETCH-LOGICAL-c219t-dd639d204f084605e5a1ffc28cb84117ab468573c93bda286253aee3d9b2fa403</cites><orcidid>0000-0002-4783-1149 ; 0000-0003-4711-9431 ; 0000-0002-7415-3638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Wallace, Brandon J</creatorcontrib><creatorcontrib>Price, Chelsea L</creatorcontrib><creatorcontrib>Davies, James F</creatorcontrib><creatorcontrib>Preston, Thomas C</creatorcontrib><title>Multicomponent diffusion in atmospheric aerosol particles</title><title>Environmental science: atmospheres</title><description>Condensed phase mass transport in single aerosol particles is investigated using a linear quadrupole electrodynamic balance (LQ-EDB) and the Maxwell-Stefan (MS) framework. In the LQ-EDB experiments, water loss from model aqueous inorganic-organic aerosol particles composed of water, ammonium sulfate (AS) and citric acid (CA) is measured by tracking morphology-dependent resonances that appear in light scattering spectra. Characteristic equilibration times are found to not follow simple mixing rules and can be much longer than those of either aqueous CA or aqueous AS. To understand these observations, we develop a multicomponent (more than two components) model based on the MS diffusion model. Activities in the mixture are calculated using the aerosol inorganic-organic mixtures functional groups activity coefficients (AIOMFAC) thermodynamic model. Fluxes from the MS equation are incorporated into an adaptive finite-volume scheme that we use to numerically solve the mass transport problem in a spherical particle with a moving boundary. The resulting model is applied to the aqueous AS/CA system and is able to provide an accurate quantitative description of measured equilibration times. The longer equilibration times in aqueous AS/CA can be understood to result from thermodynamic nonideality rather than, for instance, a phase change. Condensed phase mass transport in single aerosol particles is investigated using a linear quadrupole electrodynamic balance (LQ-EDB) and the Maxwell-Stefan (MS) framework.</description><issn>2634-3606</issn><issn>2634-3606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpN0E1LxDAQBuAgCi7rXrwLOQvVyWeT47LuqrDiRc8lzQdG2qYk3YP_3uqKOpeZw8Mw7yB0SeCGANO3DryBuVQ4QQsqGa-YBHn6bz5Hq1LeZ0IFobwWC6SfDt0UberHNPhhwi6GcCgxDTgO2Ex9KuObz9Fi43MqqcOjybPvfLlAZ8F0xa9--hK97rYvm4dq_3z_uFnvK0uJnirnJNOOAg-guAThhSEhWKpsqzghtWm5VKJmVrPWGaokFcx4z5xuaTAc2BJdH_fa-YCSfWjGHHuTPxoCzVfu5g626-_cuxlfHXEu9tf9_YV9AhpPVMU</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Wallace, Brandon J</creator><creator>Price, Chelsea L</creator><creator>Davies, James F</creator><creator>Preston, Thomas C</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4783-1149</orcidid><orcidid>https://orcid.org/0000-0003-4711-9431</orcidid><orcidid>https://orcid.org/0000-0002-7415-3638</orcidid></search><sort><creationdate>20210128</creationdate><title>Multicomponent diffusion in atmospheric aerosol particles</title><author>Wallace, Brandon J ; Price, Chelsea L ; Davies, James F ; Preston, Thomas C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-dd639d204f084605e5a1ffc28cb84117ab468573c93bda286253aee3d9b2fa403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallace, Brandon J</creatorcontrib><creatorcontrib>Price, Chelsea L</creatorcontrib><creatorcontrib>Davies, James F</creatorcontrib><creatorcontrib>Preston, Thomas C</creatorcontrib><collection>CrossRef</collection><jtitle>Environmental science: atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallace, Brandon J</au><au>Price, Chelsea L</au><au>Davies, James F</au><au>Preston, Thomas C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent diffusion in atmospheric aerosol particles</atitle><jtitle>Environmental science: atmospheres</jtitle><date>2021-01-28</date><risdate>2021</risdate><volume>1</volume><issue>1</issue><spage>45</spage><epage>55</epage><pages>45-55</pages><issn>2634-3606</issn><eissn>2634-3606</eissn><abstract>Condensed phase mass transport in single aerosol particles is investigated using a linear quadrupole electrodynamic balance (LQ-EDB) and the Maxwell-Stefan (MS) framework. In the LQ-EDB experiments, water loss from model aqueous inorganic-organic aerosol particles composed of water, ammonium sulfate (AS) and citric acid (CA) is measured by tracking morphology-dependent resonances that appear in light scattering spectra. Characteristic equilibration times are found to not follow simple mixing rules and can be much longer than those of either aqueous CA or aqueous AS. To understand these observations, we develop a multicomponent (more than two components) model based on the MS diffusion model. Activities in the mixture are calculated using the aerosol inorganic-organic mixtures functional groups activity coefficients (AIOMFAC) thermodynamic model. Fluxes from the MS equation are incorporated into an adaptive finite-volume scheme that we use to numerically solve the mass transport problem in a spherical particle with a moving boundary. The resulting model is applied to the aqueous AS/CA system and is able to provide an accurate quantitative description of measured equilibration times. The longer equilibration times in aqueous AS/CA can be understood to result from thermodynamic nonideality rather than, for instance, a phase change. Condensed phase mass transport in single aerosol particles is investigated using a linear quadrupole electrodynamic balance (LQ-EDB) and the Maxwell-Stefan (MS) framework.</abstract><doi>10.1039/d0ea00008f</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4783-1149</orcidid><orcidid>https://orcid.org/0000-0003-4711-9431</orcidid><orcidid>https://orcid.org/0000-0002-7415-3638</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2634-3606
ispartof Environmental science: atmospheres, 2021-01, Vol.1 (1), p.45-55
issn 2634-3606
2634-3606
language eng
recordid cdi_crossref_primary_10_1039_D0EA00008F
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Multicomponent diffusion in atmospheric aerosol particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20diffusion%20in%20atmospheric%20aerosol%20particles&rft.jtitle=Environmental%20science:%20atmospheres&rft.au=Wallace,%20Brandon%20J&rft.date=2021-01-28&rft.volume=1&rft.issue=1&rft.spage=45&rft.epage=55&rft.pages=45-55&rft.issn=2634-3606&rft.eissn=2634-3606&rft_id=info:doi/10.1039/d0ea00008f&rft_dat=%3Crsc_cross%3Ed0ea00008f%3C/rsc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true