Guidelines for designing highly concentrated electrolytes for low temperature applications

The redefinition of the commonly named "water-in-salt" clarifies the operating temperatures of the state-of-the-art LiTFSI-based aqueous solutions. An in-depth study shows its mismatch for low temperature applications. In contrast, the recommended strategy is to design an electrolyte with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2020-08, Vol.56 (68), p.983-9833
Hauptverfasser: Ah-lung, Guillaume, Flamme, Benjamin, Ghamouss, Fouad, Maréchal, Manuel, Jacquemin, Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9833
container_issue 68
container_start_page 983
container_title Chemical communications (Cambridge, England)
container_volume 56
creator Ah-lung, Guillaume
Flamme, Benjamin
Ghamouss, Fouad
Maréchal, Manuel
Jacquemin, Johan
description The redefinition of the commonly named "water-in-salt" clarifies the operating temperatures of the state-of-the-art LiTFSI-based aqueous solutions. An in-depth study shows its mismatch for low temperature applications. In contrast, the recommended strategy is to design an electrolyte with an invariant composition, as exemplified by the eutectic water/LiNO 3 that is able to electrochemically cycle down to −23 °C. The WISS concept for the rational design of aqueous electrolytes for low temperature applications.
doi_str_mv 10.1039/d0cc03963b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_D0CC03963B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427522546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-47f079ef1b72328991d9e0fc8be41b6fbac342196b015d6fdc1e67f85f6e1dc93</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_AgFvtDL96VES9aGM2vyUyOddVWWPCiIF5CJnnZTclOxmRG2f--WXfdgofm8kLeh_CSL0LPCX5HMJPvLTamVMH6R-iMMMHrhnc_Hu_2jaxbxptTdJ7zLS6LNN0TdMpoSwSn7Rn6eT17C8EPkCsXU2Uh-9Xgh1W19qt12FYmDgaGKekJbAUBzJRi2E4HHuKfaoLNCKU_J6j0OAZv9OTjkJ-iE6dDhmeHeoG-f_70bXFTL79ef1lcLWvDGZtq3jrcSnCkbymjnZTESsDOdD1w0gvXa8M4JVL0ZXgrnDUEROu6xgkg1kh2gd7u713roMbkNzptVdRe3Vwt1e4MMyyEZPI3KfbN3o4p_pohT2rjs4EQ9ABxzoqWT2kobbgo9PV_9DbOaSgvKYqJTuCG4qIu98qkmHMCd5yAYLVLR33Ei8XfdD4U_PJw5dxvwB7pvzgKeLUHKZtj9z5eNVpXzIuHDLsD_PGfiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436860520</pqid></control><display><type>article</type><title>Guidelines for designing highly concentrated electrolytes for low temperature applications</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ah-lung, Guillaume ; Flamme, Benjamin ; Ghamouss, Fouad ; Maréchal, Manuel ; Jacquemin, Johan</creator><creatorcontrib>Ah-lung, Guillaume ; Flamme, Benjamin ; Ghamouss, Fouad ; Maréchal, Manuel ; Jacquemin, Johan</creatorcontrib><description>The redefinition of the commonly named "water-in-salt" clarifies the operating temperatures of the state-of-the-art LiTFSI-based aqueous solutions. An in-depth study shows its mismatch for low temperature applications. In contrast, the recommended strategy is to design an electrolyte with an invariant composition, as exemplified by the eutectic water/LiNO 3 that is able to electrochemically cycle down to −23 °C. The WISS concept for the rational design of aqueous electrolytes for low temperature applications.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/d0cc03963b</identifier><identifier>PMID: 32716427</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Analytical chemistry ; Aqueous solutions ; Chemical Sciences ; Electrochemical Techniques ; Electrolytes ; Electrolytes - chemistry ; Low temperature ; Operating temperature ; or physical chemistry ; Salts - chemistry ; Solutions - chemistry ; Temperature ; Theoretical and ; Trimethylsilyl Compounds - chemistry ; Water - chemistry</subject><ispartof>Chemical communications (Cambridge, England), 2020-08, Vol.56 (68), p.983-9833</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-47f079ef1b72328991d9e0fc8be41b6fbac342196b015d6fdc1e67f85f6e1dc93</citedby><cites>FETCH-LOGICAL-c433t-47f079ef1b72328991d9e0fc8be41b6fbac342196b015d6fdc1e67f85f6e1dc93</cites><orcidid>0000-0002-4178-8629 ; 0000-0002-4295-7244 ; 0000-0002-2419-0385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32716427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03066939$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ah-lung, Guillaume</creatorcontrib><creatorcontrib>Flamme, Benjamin</creatorcontrib><creatorcontrib>Ghamouss, Fouad</creatorcontrib><creatorcontrib>Maréchal, Manuel</creatorcontrib><creatorcontrib>Jacquemin, Johan</creatorcontrib><title>Guidelines for designing highly concentrated electrolytes for low temperature applications</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>The redefinition of the commonly named "water-in-salt" clarifies the operating temperatures of the state-of-the-art LiTFSI-based aqueous solutions. An in-depth study shows its mismatch for low temperature applications. In contrast, the recommended strategy is to design an electrolyte with an invariant composition, as exemplified by the eutectic water/LiNO 3 that is able to electrochemically cycle down to −23 °C. The WISS concept for the rational design of aqueous electrolytes for low temperature applications.</description><subject>Analytical chemistry</subject><subject>Aqueous solutions</subject><subject>Chemical Sciences</subject><subject>Electrochemical Techniques</subject><subject>Electrolytes</subject><subject>Electrolytes - chemistry</subject><subject>Low temperature</subject><subject>Operating temperature</subject><subject>or physical chemistry</subject><subject>Salts - chemistry</subject><subject>Solutions - chemistry</subject><subject>Temperature</subject><subject>Theoretical and</subject><subject>Trimethylsilyl Compounds - chemistry</subject><subject>Water - chemistry</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c9rFDEUB_AgFvtDL96VES9aGM2vyUyOddVWWPCiIF5CJnnZTclOxmRG2f--WXfdgofm8kLeh_CSL0LPCX5HMJPvLTamVMH6R-iMMMHrhnc_Hu_2jaxbxptTdJ7zLS6LNN0TdMpoSwSn7Rn6eT17C8EPkCsXU2Uh-9Xgh1W19qt12FYmDgaGKekJbAUBzJRi2E4HHuKfaoLNCKU_J6j0OAZv9OTjkJ-iE6dDhmeHeoG-f_70bXFTL79ef1lcLWvDGZtq3jrcSnCkbymjnZTESsDOdD1w0gvXa8M4JVL0ZXgrnDUEROu6xgkg1kh2gd7u713roMbkNzptVdRe3Vwt1e4MMyyEZPI3KfbN3o4p_pohT2rjs4EQ9ABxzoqWT2kobbgo9PV_9DbOaSgvKYqJTuCG4qIu98qkmHMCd5yAYLVLR33Ei8XfdD4U_PJw5dxvwB7pvzgKeLUHKZtj9z5eNVpXzIuHDLsD_PGfiQ</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Ah-lung, Guillaume</creator><creator>Flamme, Benjamin</creator><creator>Ghamouss, Fouad</creator><creator>Maréchal, Manuel</creator><creator>Jacquemin, Johan</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4178-8629</orcidid><orcidid>https://orcid.org/0000-0002-4295-7244</orcidid><orcidid>https://orcid.org/0000-0002-2419-0385</orcidid></search><sort><creationdate>20200825</creationdate><title>Guidelines for designing highly concentrated electrolytes for low temperature applications</title><author>Ah-lung, Guillaume ; Flamme, Benjamin ; Ghamouss, Fouad ; Maréchal, Manuel ; Jacquemin, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-47f079ef1b72328991d9e0fc8be41b6fbac342196b015d6fdc1e67f85f6e1dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Aqueous solutions</topic><topic>Chemical Sciences</topic><topic>Electrochemical Techniques</topic><topic>Electrolytes</topic><topic>Electrolytes - chemistry</topic><topic>Low temperature</topic><topic>Operating temperature</topic><topic>or physical chemistry</topic><topic>Salts - chemistry</topic><topic>Solutions - chemistry</topic><topic>Temperature</topic><topic>Theoretical and</topic><topic>Trimethylsilyl Compounds - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ah-lung, Guillaume</creatorcontrib><creatorcontrib>Flamme, Benjamin</creatorcontrib><creatorcontrib>Ghamouss, Fouad</creatorcontrib><creatorcontrib>Maréchal, Manuel</creatorcontrib><creatorcontrib>Jacquemin, Johan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ah-lung, Guillaume</au><au>Flamme, Benjamin</au><au>Ghamouss, Fouad</au><au>Maréchal, Manuel</au><au>Jacquemin, Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guidelines for designing highly concentrated electrolytes for low temperature applications</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2020-08-25</date><risdate>2020</risdate><volume>56</volume><issue>68</issue><spage>983</spage><epage>9833</epage><pages>983-9833</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>The redefinition of the commonly named "water-in-salt" clarifies the operating temperatures of the state-of-the-art LiTFSI-based aqueous solutions. An in-depth study shows its mismatch for low temperature applications. In contrast, the recommended strategy is to design an electrolyte with an invariant composition, as exemplified by the eutectic water/LiNO 3 that is able to electrochemically cycle down to −23 °C. The WISS concept for the rational design of aqueous electrolytes for low temperature applications.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32716427</pmid><doi>10.1039/d0cc03963b</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4178-8629</orcidid><orcidid>https://orcid.org/0000-0002-4295-7244</orcidid><orcidid>https://orcid.org/0000-0002-2419-0385</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-7345
ispartof Chemical communications (Cambridge, England), 2020-08, Vol.56 (68), p.983-9833
issn 1359-7345
1364-548X
language eng
recordid cdi_crossref_primary_10_1039_D0CC03963B
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Analytical chemistry
Aqueous solutions
Chemical Sciences
Electrochemical Techniques
Electrolytes
Electrolytes - chemistry
Low temperature
Operating temperature
or physical chemistry
Salts - chemistry
Solutions - chemistry
Temperature
Theoretical and
Trimethylsilyl Compounds - chemistry
Water - chemistry
title Guidelines for designing highly concentrated electrolytes for low temperature applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guidelines%20for%20designing%20highly%20concentrated%20electrolytes%20for%20low%20temperature%20applications&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Ah-lung,%20Guillaume&rft.date=2020-08-25&rft.volume=56&rft.issue=68&rft.spage=983&rft.epage=9833&rft.pages=983-9833&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/d0cc03963b&rft_dat=%3Cproquest_cross%3E2427522546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436860520&rft_id=info:pmid/32716427&rfr_iscdi=true