Enhancing the coercivity of SmCo 5 magnet through particle size control

The SmCo 5 rare-earth hard magnet has the largest anisotropy field among all known magnetic materials, 32 MA m −1 (400 kOe), while the obtainable coercivity ( H c ) is usually less than 30% of the anisotropy field. The coercivity is enhanced when the grain size (spherical shape) is in the stable sin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-02, Vol.8 (6), p.2109-2116
Hauptverfasser: Tang, Hao, Mamakhel, Mohammad Aref Hasen, Christensen, Mogens
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2116
container_issue 6
container_start_page 2109
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 8
creator Tang, Hao
Mamakhel, Mohammad Aref Hasen
Christensen, Mogens
description The SmCo 5 rare-earth hard magnet has the largest anisotropy field among all known magnetic materials, 32 MA m −1 (400 kOe), while the obtainable coercivity ( H c ) is usually less than 30% of the anisotropy field. The coercivity is enhanced when the grain size (spherical shape) is in the stable single-domain size (SSDS) range. Theoretical calculation predicts the SSDS range of SmCo 5 to be 740–870 nm, however, at present, there has been no experimental data supporting this claim. Herein, we used a chemical method for tuning the average particle size (APS) of SmCo 5 resulting in sizes ranging from 228 nm to 1191 nm. We find, that the morphology and composition of the precursor plays a decisive role in determining the composition and APS of the final product. A maximum coercivity of 2.6 MA m −1 (33.1 kOe) was obtained for an APS of 823 nm. SEM images and recoil loops demonstrate that samples with high coercivity are homogeneous and the demagnetization process happens simultaneously between multiple phases showing single-phase magnetic behavior. Henkel plots and δ M plots verify the existing of strong exchange coupling interaction between particles, resulting in high M r / M s ratios. This is the first reported systematic optimization study of the coercivity of SmCo 5 based on single-domain theory and the optimized APS matches remarkably well the predicted SSDS range.
doi_str_mv 10.1039/C9TC06137A
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9TC06137A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C9TC06137A</sourcerecordid><originalsourceid>FETCH-LOGICAL-c76A-cebbadbf20eac1cc7c1be132b2e59f79733fd0cf24769abd841e4f4e9860b2cc3</originalsourceid><addsrcrecordid>eNpFkE1LxDAYhIMouKx78RfkLFTz0SbNsZR1XVjwYO8leZu0kbZZkiqsv95dFJ3LDAwzhwehe0oeKeHqqVZNTQTlsrpCK0YKksmC59d_mYlbtEnpnZxVUlEKtUK77TzoGfzc42WwGIKN4D_9csLB4bepDrjAk-5nu5z7GD76AR91XDyMFif_dVnMSwzjHbpxekx28-tr1Dxvm_olO7zu9nV1yECKKgNrjO6MY8RqoAASqLGUM8NsoZxUknPXEXAsl0Jp05U5tbnLrSoFMQyAr9HDzy3EkFK0rj1GP-l4ailpLxDafwj8G_7zT9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing the coercivity of SmCo 5 magnet through particle size control</title><source>Royal Society Of Chemistry Journals</source><creator>Tang, Hao ; Mamakhel, Mohammad Aref Hasen ; Christensen, Mogens</creator><creatorcontrib>Tang, Hao ; Mamakhel, Mohammad Aref Hasen ; Christensen, Mogens</creatorcontrib><description>The SmCo 5 rare-earth hard magnet has the largest anisotropy field among all known magnetic materials, 32 MA m −1 (400 kOe), while the obtainable coercivity ( H c ) is usually less than 30% of the anisotropy field. The coercivity is enhanced when the grain size (spherical shape) is in the stable single-domain size (SSDS) range. Theoretical calculation predicts the SSDS range of SmCo 5 to be 740–870 nm, however, at present, there has been no experimental data supporting this claim. Herein, we used a chemical method for tuning the average particle size (APS) of SmCo 5 resulting in sizes ranging from 228 nm to 1191 nm. We find, that the morphology and composition of the precursor plays a decisive role in determining the composition and APS of the final product. A maximum coercivity of 2.6 MA m −1 (33.1 kOe) was obtained for an APS of 823 nm. SEM images and recoil loops demonstrate that samples with high coercivity are homogeneous and the demagnetization process happens simultaneously between multiple phases showing single-phase magnetic behavior. Henkel plots and δ M plots verify the existing of strong exchange coupling interaction between particles, resulting in high M r / M s ratios. This is the first reported systematic optimization study of the coercivity of SmCo 5 based on single-domain theory and the optimized APS matches remarkably well the predicted SSDS range.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/C9TC06137A</identifier><language>eng</language><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-02, Vol.8 (6), p.2109-2116</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c76A-cebbadbf20eac1cc7c1be132b2e59f79733fd0cf24769abd841e4f4e9860b2cc3</citedby><cites>FETCH-LOGICAL-c76A-cebbadbf20eac1cc7c1be132b2e59f79733fd0cf24769abd841e4f4e9860b2cc3</cites><orcidid>0000-0001-6805-1232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Mamakhel, Mohammad Aref Hasen</creatorcontrib><creatorcontrib>Christensen, Mogens</creatorcontrib><title>Enhancing the coercivity of SmCo 5 magnet through particle size control</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>The SmCo 5 rare-earth hard magnet has the largest anisotropy field among all known magnetic materials, 32 MA m −1 (400 kOe), while the obtainable coercivity ( H c ) is usually less than 30% of the anisotropy field. The coercivity is enhanced when the grain size (spherical shape) is in the stable single-domain size (SSDS) range. Theoretical calculation predicts the SSDS range of SmCo 5 to be 740–870 nm, however, at present, there has been no experimental data supporting this claim. Herein, we used a chemical method for tuning the average particle size (APS) of SmCo 5 resulting in sizes ranging from 228 nm to 1191 nm. We find, that the morphology and composition of the precursor plays a decisive role in determining the composition and APS of the final product. A maximum coercivity of 2.6 MA m −1 (33.1 kOe) was obtained for an APS of 823 nm. SEM images and recoil loops demonstrate that samples with high coercivity are homogeneous and the demagnetization process happens simultaneously between multiple phases showing single-phase magnetic behavior. Henkel plots and δ M plots verify the existing of strong exchange coupling interaction between particles, resulting in high M r / M s ratios. This is the first reported systematic optimization study of the coercivity of SmCo 5 based on single-domain theory and the optimized APS matches remarkably well the predicted SSDS range.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAYhIMouKx78RfkLFTz0SbNsZR1XVjwYO8leZu0kbZZkiqsv95dFJ3LDAwzhwehe0oeKeHqqVZNTQTlsrpCK0YKksmC59d_mYlbtEnpnZxVUlEKtUK77TzoGfzc42WwGIKN4D_9csLB4bepDrjAk-5nu5z7GD76AR91XDyMFif_dVnMSwzjHbpxekx28-tr1Dxvm_olO7zu9nV1yECKKgNrjO6MY8RqoAASqLGUM8NsoZxUknPXEXAsl0Jp05U5tbnLrSoFMQyAr9HDzy3EkFK0rj1GP-l4ailpLxDafwj8G_7zT9U</recordid><startdate>20200213</startdate><enddate>20200213</enddate><creator>Tang, Hao</creator><creator>Mamakhel, Mohammad Aref Hasen</creator><creator>Christensen, Mogens</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6805-1232</orcidid></search><sort><creationdate>20200213</creationdate><title>Enhancing the coercivity of SmCo 5 magnet through particle size control</title><author>Tang, Hao ; Mamakhel, Mohammad Aref Hasen ; Christensen, Mogens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c76A-cebbadbf20eac1cc7c1be132b2e59f79733fd0cf24769abd841e4f4e9860b2cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hao</creatorcontrib><creatorcontrib>Mamakhel, Mohammad Aref Hasen</creatorcontrib><creatorcontrib>Christensen, Mogens</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Hao</au><au>Mamakhel, Mohammad Aref Hasen</au><au>Christensen, Mogens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the coercivity of SmCo 5 magnet through particle size control</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-02-13</date><risdate>2020</risdate><volume>8</volume><issue>6</issue><spage>2109</spage><epage>2116</epage><pages>2109-2116</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>The SmCo 5 rare-earth hard magnet has the largest anisotropy field among all known magnetic materials, 32 MA m −1 (400 kOe), while the obtainable coercivity ( H c ) is usually less than 30% of the anisotropy field. The coercivity is enhanced when the grain size (spherical shape) is in the stable single-domain size (SSDS) range. Theoretical calculation predicts the SSDS range of SmCo 5 to be 740–870 nm, however, at present, there has been no experimental data supporting this claim. Herein, we used a chemical method for tuning the average particle size (APS) of SmCo 5 resulting in sizes ranging from 228 nm to 1191 nm. We find, that the morphology and composition of the precursor plays a decisive role in determining the composition and APS of the final product. A maximum coercivity of 2.6 MA m −1 (33.1 kOe) was obtained for an APS of 823 nm. SEM images and recoil loops demonstrate that samples with high coercivity are homogeneous and the demagnetization process happens simultaneously between multiple phases showing single-phase magnetic behavior. Henkel plots and δ M plots verify the existing of strong exchange coupling interaction between particles, resulting in high M r / M s ratios. This is the first reported systematic optimization study of the coercivity of SmCo 5 based on single-domain theory and the optimized APS matches remarkably well the predicted SSDS range.</abstract><doi>10.1039/C9TC06137A</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6805-1232</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-02, Vol.8 (6), p.2109-2116
issn 2050-7526
2050-7534
language eng
recordid cdi_crossref_primary_10_1039_C9TC06137A
source Royal Society Of Chemistry Journals
title Enhancing the coercivity of SmCo 5 magnet through particle size control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20coercivity%20of%20SmCo%205%20magnet%20through%20particle%20size%20control&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Tang,%20Hao&rft.date=2020-02-13&rft.volume=8&rft.issue=6&rft.spage=2109&rft.epage=2116&rft.pages=2109-2116&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/C9TC06137A&rft_dat=%3Ccrossref%3E10_1039_C9TC06137A%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true