Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration

Integrating multiple pro-osteogenic factors into bone graft substitutes is a practical and effective approach to improve bone repair efficacy. Here, Si-Zn dual elements and PLGA microspheres were incorporated into calcium phosphate cement (CPC) scaffolds (PLGA/CPC-Si/Zn) as a novel strategy to syner...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2020-04, Vol.8 (15), p.338-349
Hauptverfasser: Liang, Weiwei, Gao, Min, Lou, Jingsheng, Bai, Yunyang, Zhang, Jing, Lu, Teliang, Sun, Xiaowen, Ye, Jiandong, Li, Baowei, Sun, Li, Heng, Boon Chin, Zhang, Xuehui, Deng, Xuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 15
container_start_page 338
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 8
creator Liang, Weiwei
Gao, Min
Lou, Jingsheng
Bai, Yunyang
Zhang, Jing
Lu, Teliang
Sun, Xiaowen
Ye, Jiandong
Li, Baowei
Sun, Li
Heng, Boon Chin
Zhang, Xuehui
Deng, Xuliang
description Integrating multiple pro-osteogenic factors into bone graft substitutes is a practical and effective approach to improve bone repair efficacy. Here, Si-Zn dual elements and PLGA microspheres were incorporated into calcium phosphate cement (CPC) scaffolds (PLGA/CPC-Si/Zn) as a novel strategy to synergistically enhance bone regeneration. The incorporation of PLGA microspheres and Si/Zn dual elements within CPC scaffolds improved the setting time, injectability and compressive strength. The PLGA/CPC-Si/Zn scaffolds displayed controlled sequential release of Si and Zn ions. In vitro , RAW 264.7 cells displayed the M2 phenotype with a high level of anti-inflammatory cytokines in response to PLGA/CPC-Si/Zn. The conditioned medium of RAW 264.7 cells cultured on the PLGA/CPC-Si/Zn scaffolds significantly enhanced the osteogenic differentiation of rat BMSCs. In a rat femur defect model, the implanted PLGA/CPC-Si/Zn scaffolds led to obvious new bone formation after 4 weeks, apparent bone ingrowth into the PLGA microspheres after 12 weeks, and was almost completely filled with mature new bone upon degradation of the PLGA microspheres at 24 weeks. These findings demonstrate that the PLGA/CPC-Si/Zn scaffolds promote osteogenesis by synergistically improving the immune microenvironment and biodegradability. Hence, integrating multiple trace elements together with degradable components within bone graft biomaterials can be an effective strategy for promoting bone regeneration. Integrating multiple pro-osteogenic factors into bone graft substitutes is a practical and effective approach to improve bone repair efficacy.
doi_str_mv 10.1039/c9tb02901j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1039_C9TB02901J</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381625184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-1021c1c98d45df8174fbc7b8408d24e06f765315941c514aeb1ee33e53e1544d3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpaEKaS-8tKr2EwjYaS1pbx2RJ04SF9pBCb0aWx7taZNmVZMrmR-Q3V5tNt9BD56JB75theI-QN8A-AePqwqjUsEIx2LwgJwWTbFZKqF4eevbjmJzFuGG5KphXXLwix7wANWdCnZDHW59wFXSyfkWjddYM_uLBekPbSTuKDnv0KdJfNq3pt-XNJe2tCUMc1xgwUuup0c7YqafjeverE1LzNEOj0V03uDbSuPUYVjYmm2G3pejX2ps83gweacAVZj2fMPjX5KjTLuLZ83tKvn--vl98mS2_3twuLpczI5hIM2AFGDCqaoVsuwpK0TWmbCrBqrYQyOZdOZccpBJgJAiNDSByjpIjSCFafkrO93vHMPycMKa6t9Ggc9rjMMW64NmrIhspMvrhH3QzTMHn63aUKoEpJTP1cU_tzIkBu3oMttdhWwOrd0HVC3V_9RTUXYbfPa-cmh7bA_onlgy83QMhmoP6N-msv_-fXo9tx38Dhs-lJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389710995</pqid></control><display><type>article</type><title>Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liang, Weiwei ; Gao, Min ; Lou, Jingsheng ; Bai, Yunyang ; Zhang, Jing ; Lu, Teliang ; Sun, Xiaowen ; Ye, Jiandong ; Li, Baowei ; Sun, Li ; Heng, Boon Chin ; Zhang, Xuehui ; Deng, Xuliang</creator><creatorcontrib>Liang, Weiwei ; Gao, Min ; Lou, Jingsheng ; Bai, Yunyang ; Zhang, Jing ; Lu, Teliang ; Sun, Xiaowen ; Ye, Jiandong ; Li, Baowei ; Sun, Li ; Heng, Boon Chin ; Zhang, Xuehui ; Deng, Xuliang</creatorcontrib><description>Integrating multiple pro-osteogenic factors into bone graft substitutes is a practical and effective approach to improve bone repair efficacy. Here, Si-Zn dual elements and PLGA microspheres were incorporated into calcium phosphate cement (CPC) scaffolds (PLGA/CPC-Si/Zn) as a novel strategy to synergistically enhance bone regeneration. The incorporation of PLGA microspheres and Si/Zn dual elements within CPC scaffolds improved the setting time, injectability and compressive strength. The PLGA/CPC-Si/Zn scaffolds displayed controlled sequential release of Si and Zn ions. In vitro , RAW 264.7 cells displayed the M2 phenotype with a high level of anti-inflammatory cytokines in response to PLGA/CPC-Si/Zn. The conditioned medium of RAW 264.7 cells cultured on the PLGA/CPC-Si/Zn scaffolds significantly enhanced the osteogenic differentiation of rat BMSCs. In a rat femur defect model, the implanted PLGA/CPC-Si/Zn scaffolds led to obvious new bone formation after 4 weeks, apparent bone ingrowth into the PLGA microspheres after 12 weeks, and was almost completely filled with mature new bone upon degradation of the PLGA microspheres at 24 weeks. These findings demonstrate that the PLGA/CPC-Si/Zn scaffolds promote osteogenesis by synergistically improving the immune microenvironment and biodegradability. Hence, integrating multiple trace elements together with degradable components within bone graft biomaterials can be an effective strategy for promoting bone regeneration. Integrating multiple pro-osteogenic factors into bone graft substitutes is a practical and effective approach to improve bone repair efficacy.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/c9tb02901j</identifier><identifier>PMID: 32196049</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Animals ; Biodegradability ; Biodegradation ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone Cements - chemistry ; Bone Cements - pharmacology ; Bone grafts ; Bone growth ; Bone healing ; Bone Regeneration - drug effects ; Calcium ; Calcium phosphates ; Calcium Phosphates - chemistry ; Calcium Phosphates - pharmacology ; Cell Differentiation - drug effects ; Cells, Cultured ; Cement ; Compressive strength ; Cytokines ; Differentiation (biology) ; Femur ; Grafting ; Grafts ; Inflammation ; Injectability ; Materials Testing ; Mice ; Microspheres ; Osteogenesis ; Osteogenesis - drug effects ; Particle Size ; Phenotypes ; Polylactic Acid-Polyglycolic Acid Copolymer - chemical synthesis ; Polylactic Acid-Polyglycolic Acid Copolymer - chemistry ; Polylactic Acid-Polyglycolic Acid Copolymer - pharmacology ; Polylactide-co-glycolide ; Rats ; RAW 264.7 Cells ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Silicon ; Silicon - chemistry ; Skin &amp; tissue grafts ; Substitute bone ; Surface Properties ; Surgical implants ; Time compression ; Tissue Scaffolds - chemistry ; Trace elements ; Zinc ; Zinc - chemistry</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2020-04, Vol.8 (15), p.338-349</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-1021c1c98d45df8174fbc7b8408d24e06f765315941c514aeb1ee33e53e1544d3</citedby><cites>FETCH-LOGICAL-c404t-1021c1c98d45df8174fbc7b8408d24e06f765315941c514aeb1ee33e53e1544d3</cites><orcidid>0000-0002-5366-2054 ; 0000-0003-1016-6488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32196049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Weiwei</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Lou, Jingsheng</creatorcontrib><creatorcontrib>Bai, Yunyang</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Lu, Teliang</creatorcontrib><creatorcontrib>Sun, Xiaowen</creatorcontrib><creatorcontrib>Ye, Jiandong</creatorcontrib><creatorcontrib>Li, Baowei</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Heng, Boon Chin</creatorcontrib><creatorcontrib>Zhang, Xuehui</creatorcontrib><creatorcontrib>Deng, Xuliang</creatorcontrib><title>Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>Integrating multiple pro-osteogenic factors into bone graft substitutes is a practical and effective approach to improve bone repair efficacy. Here, Si-Zn dual elements and PLGA microspheres were incorporated into calcium phosphate cement (CPC) scaffolds (PLGA/CPC-Si/Zn) as a novel strategy to synergistically enhance bone regeneration. The incorporation of PLGA microspheres and Si/Zn dual elements within CPC scaffolds improved the setting time, injectability and compressive strength. The PLGA/CPC-Si/Zn scaffolds displayed controlled sequential release of Si and Zn ions. In vitro , RAW 264.7 cells displayed the M2 phenotype with a high level of anti-inflammatory cytokines in response to PLGA/CPC-Si/Zn. The conditioned medium of RAW 264.7 cells cultured on the PLGA/CPC-Si/Zn scaffolds significantly enhanced the osteogenic differentiation of rat BMSCs. In a rat femur defect model, the implanted PLGA/CPC-Si/Zn scaffolds led to obvious new bone formation after 4 weeks, apparent bone ingrowth into the PLGA microspheres after 12 weeks, and was almost completely filled with mature new bone upon degradation of the PLGA microspheres at 24 weeks. These findings demonstrate that the PLGA/CPC-Si/Zn scaffolds promote osteogenesis by synergistically improving the immune microenvironment and biodegradability. Hence, integrating multiple trace elements together with degradable components within bone graft biomaterials can be an effective strategy for promoting bone regeneration. Integrating multiple pro-osteogenic factors into bone graft substitutes is a practical and effective approach to improve bone repair efficacy.</description><subject>Animals</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone Cements - chemistry</subject><subject>Bone Cements - pharmacology</subject><subject>Bone grafts</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone Regeneration - drug effects</subject><subject>Calcium</subject><subject>Calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Calcium Phosphates - pharmacology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cells, Cultured</subject><subject>Cement</subject><subject>Compressive strength</subject><subject>Cytokines</subject><subject>Differentiation (biology)</subject><subject>Femur</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Inflammation</subject><subject>Injectability</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Microspheres</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>Particle Size</subject><subject>Phenotypes</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - chemical synthesis</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - pharmacology</subject><subject>Polylactide-co-glycolide</subject><subject>Rats</subject><subject>RAW 264.7 Cells</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Skin &amp; tissue grafts</subject><subject>Substitute bone</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Time compression</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Trace elements</subject><subject>Zinc</subject><subject>Zinc - chemistry</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFr3DAQhUVpaEKaS-8tKr2EwjYaS1pbx2RJ04SF9pBCb0aWx7taZNmVZMrmR-Q3V5tNt9BD56JB75theI-QN8A-AePqwqjUsEIx2LwgJwWTbFZKqF4eevbjmJzFuGG5KphXXLwix7wANWdCnZDHW59wFXSyfkWjddYM_uLBekPbSTuKDnv0KdJfNq3pt-XNJe2tCUMc1xgwUuup0c7YqafjeverE1LzNEOj0V03uDbSuPUYVjYmm2G3pejX2ps83gweacAVZj2fMPjX5KjTLuLZ83tKvn--vl98mS2_3twuLpczI5hIM2AFGDCqaoVsuwpK0TWmbCrBqrYQyOZdOZccpBJgJAiNDSByjpIjSCFafkrO93vHMPycMKa6t9Ggc9rjMMW64NmrIhspMvrhH3QzTMHn63aUKoEpJTP1cU_tzIkBu3oMttdhWwOrd0HVC3V_9RTUXYbfPa-cmh7bA_onlgy83QMhmoP6N-msv_-fXo9tx38Dhs-lJA</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>Liang, Weiwei</creator><creator>Gao, Min</creator><creator>Lou, Jingsheng</creator><creator>Bai, Yunyang</creator><creator>Zhang, Jing</creator><creator>Lu, Teliang</creator><creator>Sun, Xiaowen</creator><creator>Ye, Jiandong</creator><creator>Li, Baowei</creator><creator>Sun, Li</creator><creator>Heng, Boon Chin</creator><creator>Zhang, Xuehui</creator><creator>Deng, Xuliang</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5366-2054</orcidid><orcidid>https://orcid.org/0000-0003-1016-6488</orcidid></search><sort><creationdate>20200421</creationdate><title>Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration</title><author>Liang, Weiwei ; Gao, Min ; Lou, Jingsheng ; Bai, Yunyang ; Zhang, Jing ; Lu, Teliang ; Sun, Xiaowen ; Ye, Jiandong ; Li, Baowei ; Sun, Li ; Heng, Boon Chin ; Zhang, Xuehui ; Deng, Xuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-1021c1c98d45df8174fbc7b8408d24e06f765315941c514aeb1ee33e53e1544d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone Cements - chemistry</topic><topic>Bone Cements - pharmacology</topic><topic>Bone grafts</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone Regeneration - drug effects</topic><topic>Calcium</topic><topic>Calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Calcium Phosphates - pharmacology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cells, Cultured</topic><topic>Cement</topic><topic>Compressive strength</topic><topic>Cytokines</topic><topic>Differentiation (biology)</topic><topic>Femur</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Inflammation</topic><topic>Injectability</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Microspheres</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>Particle Size</topic><topic>Phenotypes</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - chemical synthesis</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - pharmacology</topic><topic>Polylactide-co-glycolide</topic><topic>Rats</topic><topic>RAW 264.7 Cells</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Skin &amp; tissue grafts</topic><topic>Substitute bone</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Time compression</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Trace elements</topic><topic>Zinc</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Weiwei</creatorcontrib><creatorcontrib>Gao, Min</creatorcontrib><creatorcontrib>Lou, Jingsheng</creatorcontrib><creatorcontrib>Bai, Yunyang</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Lu, Teliang</creatorcontrib><creatorcontrib>Sun, Xiaowen</creatorcontrib><creatorcontrib>Ye, Jiandong</creatorcontrib><creatorcontrib>Li, Baowei</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Heng, Boon Chin</creatorcontrib><creatorcontrib>Zhang, Xuehui</creatorcontrib><creatorcontrib>Deng, Xuliang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Weiwei</au><au>Gao, Min</au><au>Lou, Jingsheng</au><au>Bai, Yunyang</au><au>Zhang, Jing</au><au>Lu, Teliang</au><au>Sun, Xiaowen</au><au>Ye, Jiandong</au><au>Li, Baowei</au><au>Sun, Li</au><au>Heng, Boon Chin</au><au>Zhang, Xuehui</au><au>Deng, Xuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2020-04-21</date><risdate>2020</risdate><volume>8</volume><issue>15</issue><spage>338</spage><epage>349</epage><pages>338-349</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Integrating multiple pro-osteogenic factors into bone graft substitutes is a practical and effective approach to improve bone repair efficacy. Here, Si-Zn dual elements and PLGA microspheres were incorporated into calcium phosphate cement (CPC) scaffolds (PLGA/CPC-Si/Zn) as a novel strategy to synergistically enhance bone regeneration. The incorporation of PLGA microspheres and Si/Zn dual elements within CPC scaffolds improved the setting time, injectability and compressive strength. The PLGA/CPC-Si/Zn scaffolds displayed controlled sequential release of Si and Zn ions. In vitro , RAW 264.7 cells displayed the M2 phenotype with a high level of anti-inflammatory cytokines in response to PLGA/CPC-Si/Zn. The conditioned medium of RAW 264.7 cells cultured on the PLGA/CPC-Si/Zn scaffolds significantly enhanced the osteogenic differentiation of rat BMSCs. In a rat femur defect model, the implanted PLGA/CPC-Si/Zn scaffolds led to obvious new bone formation after 4 weeks, apparent bone ingrowth into the PLGA microspheres after 12 weeks, and was almost completely filled with mature new bone upon degradation of the PLGA microspheres at 24 weeks. These findings demonstrate that the PLGA/CPC-Si/Zn scaffolds promote osteogenesis by synergistically improving the immune microenvironment and biodegradability. Hence, integrating multiple trace elements together with degradable components within bone graft biomaterials can be an effective strategy for promoting bone regeneration. Integrating multiple pro-osteogenic factors into bone graft substitutes is a practical and effective approach to improve bone repair efficacy.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32196049</pmid><doi>10.1039/c9tb02901j</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5366-2054</orcidid><orcidid>https://orcid.org/0000-0003-1016-6488</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2020-04, Vol.8 (15), p.338-349
issn 2050-750X
2050-7518
language eng
recordid cdi_crossref_primary_10_1039_C9TB02901J
source MEDLINE; Royal Society Of Chemistry Journals 2008-
subjects Animals
Biodegradability
Biodegradation
Biomaterials
Biomedical materials
Bone biomaterials
Bone Cements - chemistry
Bone Cements - pharmacology
Bone grafts
Bone growth
Bone healing
Bone Regeneration - drug effects
Calcium
Calcium phosphates
Calcium Phosphates - chemistry
Calcium Phosphates - pharmacology
Cell Differentiation - drug effects
Cells, Cultured
Cement
Compressive strength
Cytokines
Differentiation (biology)
Femur
Grafting
Grafts
Inflammation
Injectability
Materials Testing
Mice
Microspheres
Osteogenesis
Osteogenesis - drug effects
Particle Size
Phenotypes
Polylactic Acid-Polyglycolic Acid Copolymer - chemical synthesis
Polylactic Acid-Polyglycolic Acid Copolymer - chemistry
Polylactic Acid-Polyglycolic Acid Copolymer - pharmacology
Polylactide-co-glycolide
Rats
RAW 264.7 Cells
Regeneration
Regeneration (physiology)
Scaffolds
Silicon
Silicon - chemistry
Skin & tissue grafts
Substitute bone
Surface Properties
Surgical implants
Time compression
Tissue Scaffolds - chemistry
Trace elements
Zinc
Zinc - chemistry
title Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20silicon/zinc%20dual%20elements%20with%20PLGA%20microspheres%20in%20calcium%20phosphate%20cement%20scaffolds%20synergistically%20enhances%20bone%20regeneration&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Liang,%20Weiwei&rft.date=2020-04-21&rft.volume=8&rft.issue=15&rft.spage=338&rft.epage=349&rft.pages=338-349&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/c9tb02901j&rft_dat=%3Cproquest_cross%3E2381625184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389710995&rft_id=info:pmid/32196049&rfr_iscdi=true